S-Dreamer commited on
Commit
836afb3
·
verified ·
1 Parent(s): 920c424

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -16
README.md CHANGED
@@ -1,16 +1,94 @@
1
- ---
2
- title: Salesforce Codet5 Large
3
- emoji: ⚡
4
- colorFrom: indigo
5
- colorTo: gray
6
- sdk: gradio
7
- sdk_version: 5.23.3
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- hf_oauth: true
12
- hf_oauth_scopes:
13
- - inference-api
14
- ---
15
-
16
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Salesforce CodeT5 Large Demo
3
+ emoji: ⚡
4
+ colorFrom: indigo
5
+ colorTo: gray
6
+ sdk: gradio
7
+ sdk_version: 5.23.3
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ datasets:
12
+ - CodeSearchNet/codesearchnet_python
13
+ - bigcode/the-stack-dedup
14
+ - codeparrot/codeparrot-clean
15
+ - openai_humaneval
16
+ - google/mbpp
17
+ hf_oauth: true
18
+ hf_oauth_scopes:
19
+ - inference-api
20
+ short_description: Using the powerful Salesforce CodeT5-large model
21
+ ---
22
+
23
+ # ⚡ Salesforce CodeT5-large Demo ⚡
24
+
25
+ Welcome! This repository/Hugging Face Space hosts a demonstration application for the powerful [Salesforce CodeT5-large](https://huggingface.co/Salesforce/codet5-large) model. It showcases the model's capabilities in various code intelligence tasks using a Gradio interface.
26
+
27
+ ## About CodeT5-large
28
+
29
+ CodeT5 is an advanced encoder-decoder transformer model pre-trained on a vast collection of source code from multiple programming languages alongside natural language text. The `codet5-large` variant excels at tasks such as:
30
+
31
+ * **Code Generation:** Creating code snippets from natural language descriptions (e.g., comments, docstrings).
32
+ * **Code Summarization:** Generating concise natural language summaries for given code blocks.
33
+ * **Code Translation:** Translating code from one programming language to another.
34
+ * **Code Refinement:** Improving code quality, fixing bugs, or optimizing code.
35
+
36
+ ## Using the Demo (Hugging Face Space)
37
+
38
+ This application is built with Gradio, providing an interactive web UI.
39
+
40
+ 1. **Access the Space:** Navigate to the Hugging Face Space hosting this demo.
41
+ 2. **Interact:** Use the input fields provided by the Gradio interface (`app.py`) to interact with the model.
42
+ * *(Example: You might enter a Python docstring in one box to get the generated function body in another, or input code to get a summary. Please update this section with specific instructions based on your `app.py` functionality!)*
43
+ 3. **Observe:** See the results generated by the CodeT5-large model in the output fields.
44
+
45
+ ## Running Locally (GitHub / Manual Setup)
46
+
47
+ If you prefer to run this demo on your local machine:
48
+
49
+ 1. **Clone the Repository:**
50
+ ```bash
51
+ git clone <repository_url> # Replace with HF Space or GitHub repo URL
52
+ cd <repository_directory>
53
+ ```
54
+
55
+ 2. **Set up Environment:** (Optional but recommended) Create and activate a virtual environment:
56
+ ```bash
57
+ python -m venv venv
58
+ source venv/bin/activate # Linux/macOS
59
+ # venv\Scripts\activate # Windows
60
+ ```
61
+
62
+ 3. **Install Dependencies:** Ensure you have Python 3 installed. You'll need Gradio and the necessary libraries for CodeT5 (like `transformers` and `torch`). Create a `requirements.txt` file if one doesn't exist:
63
+ ```plaintext
64
+ # requirements.txt
65
+ gradio==5.23.3
66
+ transformers
67
+ torch
68
+ # Add any other specific libraries your app.py needs
69
+ ```
70
+ Then install:
71
+ ```bash
72
+ pip install -r requirements.txt
73
+ ```
74
+
75
+ 4. **Run the Application:**
76
+ ```bash
77
+ python app.py
78
+ ```
79
+
80
+ 5. **Access Locally:** Open your web browser and navigate to the URL provided (typically `http://127.0.0.1:7860`).
81
+
82
+ ## Fine-tuning Datasets for Python & Logic
83
+
84
+ The CodeT5 model's performance on specific Python tasks or logical reasoning can be enhanced through fine-tuning. Here are some recommended datasets included in the metadata:
85
+
86
+ * [**CodeSearchNet (Python)**](https://huggingface.co/datasets/CodeSearchNet): Excellent for tasks involving matching natural language queries to relevant Python code snippets.
87
+ * [**The Stack (Deduped)**](https://huggingface.co/datasets/bigcode/the-stack-dedup): A massive, permissively licensed dataset. Filter for Python files (`lang:python`) for broad fine-tuning on diverse Python code.
88
+ * [**CodeParrot (Clean)**](https://huggingface.co/datasets/codeparrot/codeparrot-clean): A high-quality dataset specifically curated for Python code generation tasks.
89
+ * [**HumanEval**](https://huggingface.co/datasets/openai_humaneval): A benchmark dataset consisting of Python function programming problems defined by docstrings, ideal for fine-tuning code generation based on specifications and evaluating functional correctness.
90
+ * [**MBPP (Mostly Basic Python Problems)**](https://huggingface.co/datasets/google/mbpp): Contains around 1,000 crowd-sourced Python programming problems focused on basic concepts, useful for improving generation from descriptions and simple logical problem-solving.
91
+
92
+ ## License
93
+
94
+ This project and the underlying CodeT5 model are distributed under the terms of the [Apache License 2.0](LICENSE). Please refer to the LICENSE file for details.