CyberForge / components /web_scraper.py
Replit Deployment
Deployment from Replit
bb6d7b4
"""
Web scraper component for Streamlit frontend.
This integrates with the backend scraper service.
"""
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
import time
import re
import asyncio
import httpx
from typing import Dict, Any, List, Optional
import json
import sys
import os
# Add the src directory to the path so we can import the services
sys.path.append(os.path.abspath('.'))
try:
from src.services.scraper import WebScraper
from src.services.tor_proxy import TorProxyService
except ImportError:
# Fallback if imports fail - we'll use a simplified version
WebScraper = None
TorProxyService = None
# Check if Tor is running
def is_tor_running() -> bool:
"""Check if Tor service is running and accessible."""
try:
with httpx.Client(timeout=3) as client:
response = client.get("http://127.0.0.1:9050")
return True
except Exception:
return False
# Create a scraper instance
async def get_scraper():
"""Get a configured scraper instance."""
if WebScraper and TorProxyService:
try:
tor_proxy = TorProxyService()
# Check if Tor is accessible
is_connected = await tor_proxy.check_connection()
if is_connected:
return WebScraper(tor_proxy_service=tor_proxy)
except Exception as e:
st.error(f"Error connecting to Tor: {e}")
# If we can't connect to Tor or imports failed, return None
return None
async def extract_content(url: str, use_tor: bool = False) -> Dict[str, Any]:
"""
Extract content from a URL using the backend scraper.
Args:
url (str): URL to scrape
use_tor (bool): Whether to use Tor proxy
Returns:
Dict[str, Any]: Extracted content
"""
scraper = await get_scraper()
if scraper:
try:
return await scraper.extract_content(url, use_tor=use_tor)
except Exception as e:
st.error(f"Error extracting content: {e}")
return {
"url": url,
"title": "Error extracting content",
"text_content": f"Failed to extract content: {e}",
"indicators": {},
"links": []
}
else:
# Fallback to simulated data if scraper is unavailable
st.warning("Advanced scraping functionality unavailable. Using limited extraction.")
try:
with httpx.Client(timeout=10) as client:
response = client.get(url)
return {
"url": url,
"title": f"Content from {url}",
"text_content": response.text[:1000] + "...",
"indicators": {},
"links": []
}
except Exception as e:
return {
"url": url,
"title": "Error fetching content",
"text_content": f"Failed to fetch content: {e}",
"indicators": {},
"links": []
}
def render_indicators(indicators: Dict[str, List[str]]):
"""
Render extracted indicators in a formatted way.
Args:
indicators (Dict[str, List[str]]): Dictionary of indicator types and values
"""
if not indicators:
st.info("No indicators found in the content.")
return
# Create tabs for different indicator types
tabs = st.tabs([
f"IP Addresses ({len(indicators.get('ip_addresses', []))})",
f"Emails ({len(indicators.get('email_addresses', []))})",
f"Bitcoin ({len(indicators.get('bitcoin_addresses', []))})",
f"URLs ({len(indicators.get('urls', []))})",
f"Onion URLs ({len(indicators.get('onion_urls', []))})"
])
# IP Addresses
with tabs[0]:
if indicators.get('ip_addresses'):
st.markdown("#### Extracted IP Addresses")
ip_df = pd.DataFrame(indicators['ip_addresses'], columns=["IP Address"])
st.dataframe(ip_df, use_container_width=True)
else:
st.info("No IP addresses found.")
# Email Addresses
with tabs[1]:
if indicators.get('email_addresses'):
st.markdown("#### Extracted Email Addresses")
email_df = pd.DataFrame(indicators['email_addresses'], columns=["Email"])
st.dataframe(email_df, use_container_width=True)
else:
st.info("No email addresses found.")
# Bitcoin Addresses
with tabs[2]:
if indicators.get('bitcoin_addresses'):
st.markdown("#### Extracted Bitcoin Addresses")
btc_df = pd.DataFrame(indicators['bitcoin_addresses'], columns=["Bitcoin Address"])
st.dataframe(btc_df, use_container_width=True)
else:
st.info("No Bitcoin addresses found.")
# URLs
with tabs[3]:
if indicators.get('urls'):
st.markdown("#### Extracted URLs")
url_df = pd.DataFrame(indicators['urls'], columns=["URL"])
st.dataframe(url_df, use_container_width=True)
else:
st.info("No URLs found.")
# Onion URLs
with tabs[4]:
if indicators.get('onion_urls'):
st.markdown("#### Extracted Onion URLs")
onion_df = pd.DataFrame(indicators['onion_urls'], columns=["Onion URL"])
st.dataframe(onion_df, use_container_width=True)
else:
st.info("No onion URLs found.")
def create_keyword_highlight(text: str, keywords: Optional[List[str]] = None) -> str:
"""
Highlight keywords in text for display.
Args:
text (str): Text content to highlight
keywords (Optional[List[str]]): Keywords to highlight
Returns:
str: HTML with highlighted keywords
"""
if not text or not keywords:
return text
# Escape HTML
text = text.replace('<', '&lt;').replace('>', '&gt;')
# Highlight keywords
for keyword in keywords:
if not keyword.strip():
continue
pattern = re.compile(re.escape(keyword), re.IGNORECASE)
text = pattern.sub(f'<span style="background-color: #E74C3C40; padding: 0 2px; border-radius: 3px;">{keyword}</span>', text)
return text
def render_web_scraper_ui():
"""Render the web scraper user interface."""
st.title("Dark Web Intelligence Gathering")
# Check if Tor is accessible
if is_tor_running():
st.success("Tor service is available for .onion sites")
else:
st.warning("Tor service not detected. Limited to clearnet sites only.")
# Create UI layout
col1, col2 = st.columns([2, 1])
with col1:
st.markdown("### Content Extraction & Analysis")
# URL input
url = st.text_input(
"Enter URL to analyze",
value="https://example.com",
help="Enter a URL to scrape and analyze. For .onion sites, ensure Tor is configured."
)
# Options
use_tor = st.checkbox(
"Use Tor proxy",
value='.onion' in url,
help="Use Tor proxy for accessing .onion sites or for anonymity"
)
# Keyword highlighting
keywords_input = st.text_area(
"Keywords to highlight (one per line)",
value="example\ndata\nbreach",
help="Enter keywords to highlight in the extracted content"
)
keywords = [k.strip() for k in keywords_input.split('\n') if k.strip()]
# Extract button
extract_button = st.button("Extract Content")
with col2:
st.markdown("### Analysis Options")
analysis_tabs = st.radio(
"Analysis Type",
["Text Analysis", "Indicators", "Sentiment Analysis", "Entity Recognition"],
help="Select the type of analysis to perform on the extracted content"
)
st.markdown("### Monitoring")
monitoring_options = st.multiselect(
"Add to monitoring list",
["IP Addresses", "Email Addresses", "Bitcoin Addresses", "URLs", "Onion URLs"],
default=["IP Addresses", "URLs"],
help="Select which indicator types to monitor"
)
alert_threshold = st.slider(
"Alert Threshold",
min_value=0.0,
max_value=1.0,
value=0.7,
step=0.05,
help="Set the confidence threshold for alerts"
)
# Handle content extraction
if extract_button:
with st.spinner("Extracting content..."):
# Run the async extraction
content_data = asyncio.run(extract_content(url, use_tor=use_tor))
# Store results in session state
st.session_state.extracted_content = content_data
# Success message
st.success(f"Content extracted from {url}")
# Display extracted content if available
if 'extracted_content' in st.session_state:
content_data = st.session_state.extracted_content
# Display content in tabs
content_tabs = st.tabs(["Extracted Text", "Indicators", "Metadata", "Raw HTML"])
# Extracted text tab
with content_tabs[0]:
st.markdown(f"### {content_data.get('title', 'Extracted Content')}")
st.info(f"Source: {content_data.get('url')}")
# Highlight keywords in text
highlighted_text = create_keyword_highlight(
content_data.get('text_content', 'No content extracted'),
keywords
)
st.markdown(f"""
<div style="border: 1px solid #3498DB; border-radius: 5px; padding: 15px;
background-color: #1A1A1A; height: 400px; overflow-y: auto;">
{highlighted_text}
</div>
""", unsafe_allow_html=True)
# Indicators tab
with content_tabs[1]:
render_indicators(content_data.get('indicators', {}))
# Metadata tab
with content_tabs[2]:
st.markdown("### Document Metadata")
metadata = content_data.get('metadata', {})
if metadata:
for key, value in metadata.items():
if value:
st.markdown(f"**{key}:** {value}")
else:
st.info("No metadata available")
# Raw HTML tab
with content_tabs[3]:
st.markdown("### Raw HTML")
with st.expander("Show Raw HTML"):
st.code(content_data.get('html_content', 'No HTML content available'), language="html")
# Additional informational UI elements
st.markdown("---")
st.markdown("### About Dark Web Intelligence")
st.markdown("""
This tool allows you to extract and analyze content from both clearnet and dark web sites.
For .onion sites, make sure Tor is properly configured.
**Features:**
- Extract and analyze content from any URL
- Highlight keywords of interest
- Identify indicators of compromise (IoCs)
- Add indicators to monitoring list
""")