File size: 23,934 Bytes
bb6d7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
"""
Database integration for Streamlit application.

This module provides functions to interact with the database for the Streamlit frontend.
It wraps the async database functions in sync functions for Streamlit compatibility.
"""
import os
import asyncio
import pandas as pd
from typing import List, Dict, Any, Optional, Union, Tuple
from datetime import datetime, timedelta

from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession

# Import database models
from src.models.threat import Threat, ThreatSeverity, ThreatStatus, ThreatCategory
from src.models.indicator import Indicator, IndicatorType
from src.models.dark_web_content import DarkWebContent, DarkWebMention, ContentType, ContentStatus
from src.models.alert import Alert, AlertStatus, AlertCategory
from src.models.report import Report, ReportType, ReportStatus

# Import service functions
from src.api.services.dark_web_content_service import (
    create_content, get_content_by_id, get_contents, count_contents,
    create_mention, get_mentions, create_threat_from_content
)
from src.api.services.alert_service import (
    create_alert, get_alert_by_id, get_alerts, count_alerts,
    update_alert_status, mark_alert_as_read, get_alert_counts_by_severity
)
from src.api.services.threat_service import (
    create_threat, get_threat_by_id, get_threats, count_threats,
    update_threat, add_indicator_to_threat, get_threat_statistics
)
from src.api.services.report_service import (
    create_report, get_report_by_id, get_reports, count_reports,
    update_report, add_threat_to_report, publish_report
)

# Import schemas
from src.api.schemas import PaginationParams

# Get database URL from environment
db_url = os.getenv("DATABASE_URL", "")
if db_url.startswith("postgresql://"):
    # Remove sslmode parameter if present which causes issues with asyncpg
    if "?" in db_url:
        base_url, params = db_url.split("?", 1)
        param_list = params.split("&")
        filtered_params = [p for p in param_list if not p.startswith("sslmode=")]
        if filtered_params:
            db_url = f"{base_url}?{'&'.join(filtered_params)}"
        else:
            db_url = base_url
    
    ASYNC_DATABASE_URL = db_url.replace("postgresql://", "postgresql+asyncpg://", 1)
else:
    ASYNC_DATABASE_URL = "postgresql+asyncpg://postgres:postgres@localhost:5432/postgres"

# Create async engine
engine = create_async_engine(
    ASYNC_DATABASE_URL,
    echo=False,
    future=True,
    pool_size=5,
    max_overflow=10
)

# Create async session factory
async_session = sessionmaker(
    engine, 
    class_=AsyncSession, 
    expire_on_commit=False
)


def run_async(coro):
    """Run an async function in a sync context."""
    try:
        loop = asyncio.get_event_loop()
    except RuntimeError:
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
    
    return loop.run_until_complete(coro)


async def get_session():
    """Get an async database session."""
    async with async_session() as session:
        yield session


def get_db_session():
    """Get a database session for use in Streamlit."""
    try:
        session_gen = get_session().__aiter__()
        return run_async(session_gen.__anext__())
    except StopAsyncIteration:
        return None


async def get_async_session():
    """
    Async context manager for database sessions.
    
    Usage:
        async with get_async_session() as session:
            # Use session here
    """
    session = async_session()
    try:
        yield session
        await session.commit()
    except Exception as e:
        await session.rollback()
        raise e
    finally:
        await session.close()


# Dark Web Content functions
def get_dark_web_contents(
    page: int = 1,
    size: int = 10,
    content_type: Optional[List[ContentType]] = None,
    content_status: Optional[List[ContentStatus]] = None,
    source_name: Optional[str] = None,
    search_query: Optional[str] = None,
    from_date: Optional[datetime] = None,
    to_date: Optional[datetime] = None,
) -> pd.DataFrame:
    """
    Get dark web contents as a DataFrame.
    
    Args:
        page: Page number
        size: Page size
        content_type: Filter by content type
        content_status: Filter by content status
        source_name: Filter by source name
        search_query: Search in title and content
        from_date: Filter by scraped_at >= from_date
        to_date: Filter by scraped_at <= to_date
        
    Returns:
        pd.DataFrame: DataFrame with dark web contents
    """
    session = get_db_session()
    
    if not session:
        return pd.DataFrame()
    
    contents = run_async(get_contents(
        db=session,
        pagination=PaginationParams(page=page, size=size),
        content_type=content_type,
        content_status=content_status,
        source_name=source_name,
        search_query=search_query,
        from_date=from_date,
        to_date=to_date,
    ))
    
    if not contents:
        return pd.DataFrame()
    
    # Convert to DataFrame
    data = []
    for content in contents:
        data.append({
            "id": content.id,
            "url": content.url,
            "title": content.title,
            "content_type": content.content_type.value if content.content_type else None,
            "content_status": content.content_status.value if content.content_status else None,
            "source_name": content.source_name,
            "source_type": content.source_type,
            "language": content.language,
            "scraped_at": content.scraped_at,
            "relevance_score": content.relevance_score,
            "sentiment_score": content.sentiment_score,
        })
    
    return pd.DataFrame(data)


def add_dark_web_content(
    url: str,
    content: str,
    title: Optional[str] = None,
    content_type: ContentType = ContentType.OTHER,
    source_name: Optional[str] = None,
    source_type: Optional[str] = None,
) -> Optional[DarkWebContent]:
    """
    Add a new dark web content.
    
    Args:
        url: URL of the content
        content: Text content
        title: Title of the content
        content_type: Type of content
        source_name: Name of the source
        source_type: Type of source
        
    Returns:
        Optional[DarkWebContent]: Created content or None
    """
    session = get_db_session()
    
    if not session:
        return None
    
    return run_async(create_content(
        db=session,
        url=url,
        content=content,
        title=title,
        content_type=content_type,
        source_name=source_name,
        source_type=source_type,
    ))


def get_dark_web_mentions(
    page: int = 1,
    size: int = 10,
    keyword: Optional[str] = None,
    content_id: Optional[int] = None,
    is_verified: Optional[bool] = None,
    from_date: Optional[datetime] = None,
    to_date: Optional[datetime] = None,
) -> pd.DataFrame:
    """
    Get dark web mentions as a DataFrame.
    
    Args:
        page: Page number
        size: Page size
        keyword: Filter by keyword
        content_id: Filter by content ID
        is_verified: Filter by verification status
        from_date: Filter by created_at >= from_date
        to_date: Filter by created_at <= to_date
        
    Returns:
        pd.DataFrame: DataFrame with dark web mentions
    """
    session = get_db_session()
    
    if not session:
        return pd.DataFrame()
    
    mentions = run_async(get_mentions(
        db=session,
        pagination=PaginationParams(page=page, size=size),
        keyword=keyword,
        content_id=content_id,
        is_verified=is_verified,
        from_date=from_date,
        to_date=to_date,
    ))
    
    if not mentions:
        return pd.DataFrame()
    
    # Convert to DataFrame
    data = []
    for mention in mentions:
        data.append({
            "id": mention.id,
            "content_id": mention.content_id,
            "keyword": mention.keyword,
            "snippet": mention.snippet,
            "mention_type": mention.mention_type,
            "confidence": mention.confidence,
            "is_verified": mention.is_verified,
            "created_at": mention.created_at,
        })
    
    return pd.DataFrame(data)


def add_dark_web_mention(
    content_id: int,
    keyword: str,
    context: Optional[str] = None,
    snippet: Optional[str] = None,
) -> Optional[DarkWebMention]:
    """
    Add a new dark web mention.
    
    Args:
        content_id: ID of the content where the mention was found
        keyword: Keyword that was mentioned
        context: Text surrounding the mention
        snippet: Extract of text containing the mention
        
    Returns:
        Optional[DarkWebMention]: Created mention or None
    """
    session = get_db_session()
    
    if not session:
        return None
    
    return run_async(create_mention(
        db=session,
        content_id=content_id,
        keyword=keyword,
        context=context,
        snippet=snippet,
    ))


# Alerts functions
def get_alerts_df(
    page: int = 1,
    size: int = 10,
    severity: Optional[List[ThreatSeverity]] = None,
    status: Optional[List[AlertStatus]] = None,
    category: Optional[List[AlertCategory]] = None,
    is_read: Optional[bool] = None,
    search_query: Optional[str] = None,
    from_date: Optional[datetime] = None,
    to_date: Optional[datetime] = None,
) -> pd.DataFrame:
    """
    Get alerts as a DataFrame.
    
    Args:
        page: Page number
        size: Page size
        severity: Filter by severity
        status: Filter by status
        category: Filter by category
        is_read: Filter by read status
        search_query: Search in title and description
        from_date: Filter by generated_at >= from_date
        to_date: Filter by generated_at <= to_date
        
    Returns:
        pd.DataFrame: DataFrame with alerts
    """
    session = get_db_session()
    
    if not session:
        return pd.DataFrame()
    
    alerts = run_async(get_alerts(
        db=session,
        pagination=PaginationParams(page=page, size=size),
        severity=severity,
        status=status,
        category=category,
        is_read=is_read,
        search_query=search_query,
        from_date=from_date,
        to_date=to_date,
    ))
    
    if not alerts:
        return pd.DataFrame()
    
    # Convert to DataFrame
    data = []
    for alert in alerts:
        data.append({
            "id": alert.id,
            "title": alert.title,
            "description": alert.description,
            "severity": alert.severity.value if alert.severity else None,
            "status": alert.status.value if alert.status else None,
            "category": alert.category.value if alert.category else None,
            "generated_at": alert.generated_at,
            "source_url": alert.source_url,
            "is_read": alert.is_read,
            "threat_id": alert.threat_id,
            "mention_id": alert.mention_id,
            "assigned_to_id": alert.assigned_to_id,
            "action_taken": alert.action_taken,
            "resolved_at": alert.resolved_at,
        })
    
    return pd.DataFrame(data)


def add_alert(
    title: str,
    description: str,
    severity: ThreatSeverity,
    category: AlertCategory,
    source_url: Optional[str] = None,
    threat_id: Optional[int] = None,
    mention_id: Optional[int] = None,
) -> Optional[Alert]:
    """
    Add a new alert.
    
    Args:
        title: Alert title
        description: Alert description
        severity: Alert severity
        category: Alert category
        source_url: Source URL for the alert
        threat_id: ID of related threat
        mention_id: ID of related dark web mention
        
    Returns:
        Optional[Alert]: Created alert or None
    """
    session = get_db_session()
    
    if not session:
        return None
    
    return run_async(create_alert(
        db=session,
        title=title,
        description=description,
        severity=severity,
        category=category,
        source_url=source_url,
        threat_id=threat_id,
        mention_id=mention_id,
    ))


def update_alert(
    alert_id: int,
    status: AlertStatus,
    action_taken: Optional[str] = None,
) -> Optional[Alert]:
    """
    Update alert status.
    
    Args:
        alert_id: Alert ID
        status: New status
        action_taken: Description of action taken
        
    Returns:
        Optional[Alert]: Updated alert or None
    """
    session = get_db_session()
    
    if not session:
        return None
    
    return run_async(update_alert_status(
        db=session,
        alert_id=alert_id,
        status=status,
        action_taken=action_taken,
    ))


def get_alert_severity_counts(
    from_date: Optional[datetime] = None,
    to_date: Optional[datetime] = None,
) -> Dict[str, int]:
    """
    Get count of alerts by severity.
    
    Args:
        from_date: Filter by generated_at >= from_date
        to_date: Filter by generated_at <= to_date
        
    Returns:
        Dict[str, int]: Mapping of severity to count
    """
    session = get_db_session()
    
    if not session:
        return {}
    
    return run_async(get_alert_counts_by_severity(
        db=session,
        from_date=from_date,
        to_date=to_date,
    ))


# Threats functions
def get_threats_df(
    page: int = 1,
    size: int = 10,
    severity: Optional[List[ThreatSeverity]] = None,
    status: Optional[List[ThreatStatus]] = None,
    category: Optional[List[ThreatCategory]] = None,
    search_query: Optional[str] = None,
    from_date: Optional[datetime] = None,
    to_date: Optional[datetime] = None,
) -> pd.DataFrame:
    """
    Get threats as a DataFrame.
    
    Args:
        page: Page number
        size: Page size
        severity: Filter by severity
        status: Filter by status
        category: Filter by category
        search_query: Search in title and description
        from_date: Filter by discovered_at >= from_date
        to_date: Filter by discovered_at <= to_date
        
    Returns:
        pd.DataFrame: DataFrame with threats
    """
    session = get_db_session()
    
    if not session:
        return pd.DataFrame()
    
    threats = run_async(get_threats(
        db=session,
        pagination=PaginationParams(page=page, size=size),
        severity=severity,
        status=status,
        category=category,
        search_query=search_query,
        from_date=from_date,
        to_date=to_date,
    ))
    
    if not threats:
        return pd.DataFrame()
    
    # Convert to DataFrame
    data = []
    for threat in threats:
        data.append({
            "id": threat.id,
            "title": threat.title,
            "description": threat.description,
            "severity": threat.severity.value if threat.severity else None,
            "status": threat.status.value if threat.status else None,
            "category": threat.category.value if threat.category else None,
            "source_url": threat.source_url,
            "source_name": threat.source_name,
            "source_type": threat.source_type,
            "discovered_at": threat.discovered_at,
            "affected_entity": threat.affected_entity,
            "affected_entity_type": threat.affected_entity_type,
            "confidence_score": threat.confidence_score,
            "risk_score": threat.risk_score,
        })
    
    return pd.DataFrame(data)


def add_threat(
    title: str,
    description: str,
    severity: ThreatSeverity,
    category: ThreatCategory,
    status: ThreatStatus = ThreatStatus.NEW,
    source_url: Optional[str] = None,
    source_name: Optional[str] = None,
    source_type: Optional[str] = None,
    affected_entity: Optional[str] = None,
    affected_entity_type: Optional[str] = None,
    confidence_score: float = 0.0,
    risk_score: float = 0.0,
) -> Optional[Threat]:
    """
    Add a new threat.
    
    Args:
        title: Threat title
        description: Threat description
        severity: Threat severity
        category: Threat category
        status: Threat status
        source_url: URL of the source
        source_name: Name of the source
        source_type: Type of source
        affected_entity: Name of affected entity
        affected_entity_type: Type of affected entity
        confidence_score: Confidence score (0-1)
        risk_score: Risk score (0-1)
        
    Returns:
        Optional[Threat]: Created threat or None
    """
    session = get_db_session()
    
    if not session:
        return None
    
    return run_async(create_threat(
        db=session,
        title=title,
        description=description,
        severity=severity,
        category=category,
        status=status,
        source_url=source_url,
        source_name=source_name,
        source_type=source_type,
        affected_entity=affected_entity,
        affected_entity_type=affected_entity_type,
        confidence_score=confidence_score,
        risk_score=risk_score,
    ))


def add_indicator(
    threat_id: int,
    value: str,
    indicator_type: IndicatorType,
    description: Optional[str] = None,
    is_verified: bool = False,
    context: Optional[str] = None,
    source: Optional[str] = None,
) -> Optional[Indicator]:
    """
    Add an indicator to a threat.
    
    Args:
        threat_id: Threat ID
        value: Indicator value
        indicator_type: Indicator type
        description: Indicator description
        is_verified: Whether the indicator is verified
        context: Context of the indicator
        source: Source of the indicator
        
    Returns:
        Optional[Indicator]: Created indicator or None
    """
    session = get_db_session()
    
    if not session:
        return None
    
    return run_async(add_indicator_to_threat(
        db=session,
        threat_id=threat_id,
        value=value,
        indicator_type=indicator_type,
        description=description,
        is_verified=is_verified,
        context=context,
        source=source,
    ))


def get_threat_stats(
    from_date: Optional[datetime] = None,
    to_date: Optional[datetime] = None,
) -> Dict[str, Any]:
    """
    Get threat statistics.
    
    Args:
        from_date: Filter by discovered_at >= from_date
        to_date: Filter by discovered_at <= to_date
        
    Returns:
        Dict[str, Any]: Threat statistics
    """
    session = get_db_session()
    
    if not session:
        return {}
    
    return run_async(get_threat_statistics(
        db=session,
        from_date=from_date,
        to_date=to_date,
    ))


# Reports functions
def get_reports_df(
    page: int = 1,
    size: int = 10,
    report_type: Optional[List[ReportType]] = None,
    status: Optional[List[ReportStatus]] = None,
    severity: Optional[List[ThreatSeverity]] = None,
    search_query: Optional[str] = None,
    from_date: Optional[datetime] = None,
    to_date: Optional[datetime] = None,
) -> pd.DataFrame:
    """
    Get reports as a DataFrame.
    
    Args:
        page: Page number
        size: Page size
        report_type: Filter by report type
        status: Filter by status
        severity: Filter by severity
        search_query: Search in title and summary
        from_date: Filter by created_at >= from_date
        to_date: Filter by created_at <= to_date
        
    Returns:
        pd.DataFrame: DataFrame with reports
    """
    session = get_db_session()
    
    if not session:
        return pd.DataFrame()
    
    reports = run_async(get_reports(
        db=session,
        pagination=PaginationParams(page=page, size=size),
        report_type=report_type,
        status=status,
        severity=severity,
        search_query=search_query,
        from_date=from_date,
        to_date=to_date,
    ))
    
    if not reports:
        return pd.DataFrame()
    
    # Convert to DataFrame
    data = []
    for report in reports:
        data.append({
            "id": report.id,
            "report_id": report.report_id,
            "title": report.title,
            "summary": report.summary,
            "report_type": report.report_type.value if report.report_type else None,
            "status": report.status.value if report.status else None,
            "severity": report.severity.value if report.severity else None,
            "publish_date": report.publish_date,
            "created_at": report.created_at,
            "time_period_start": report.time_period_start,
            "time_period_end": report.time_period_end,
            "author_id": report.author_id,
        })
    
    return pd.DataFrame(data)


def add_report(
    title: str,
    summary: str,
    content: str,
    report_type: ReportType,
    report_id: str,
    status: ReportStatus = ReportStatus.DRAFT,
    severity: Optional[ThreatSeverity] = None,
    publish_date: Optional[datetime] = None,
    time_period_start: Optional[datetime] = None,
    time_period_end: Optional[datetime] = None,
    keywords: Optional[List[str]] = None,
    author_id: Optional[int] = None,
) -> Optional[Report]:
    """
    Add a new report.
    
    Args:
        title: Report title
        summary: Report summary
        content: Report content
        report_type: Type of report
        report_id: Custom ID for the report
        status: Report status
        severity: Report severity
        publish_date: Publication date
        time_period_start: Start of time period covered
        time_period_end: End of time period covered
        keywords: List of keywords related to the report
        author_id: ID of the report author
        
    Returns:
        Optional[Report]: Created report or None
    """
    session = get_db_session()
    
    if not session:
        return None
    
    return run_async(create_report(
        db=session,
        title=title,
        summary=summary,
        content=content,
        report_type=report_type,
        report_id=report_id,
        status=status,
        severity=severity,
        publish_date=publish_date,
        time_period_start=time_period_start,
        time_period_end=time_period_end,
        keywords=keywords,
        author_id=author_id,
    ))


# Helper functions
def get_time_range_dates(time_range: str) -> Tuple[datetime, datetime]:
    """
    Get start and end dates for a time range.
    
    Args:
        time_range: Time range string (e.g., "Last 7 Days")
        
    Returns:
        Tuple[datetime, datetime]: (start_date, end_date)
    """
    end_date = datetime.utcnow()
    
    if time_range == "Last 24 Hours":
        start_date = end_date - timedelta(days=1)
    elif time_range == "Last 7 Days":
        start_date = end_date - timedelta(days=7)
    elif time_range == "Last 30 Days":
        start_date = end_date - timedelta(days=30)
    elif time_range == "Last Quarter":
        start_date = end_date - timedelta(days=90)
    else:  # Default to last 30 days
        start_date = end_date - timedelta(days=30)
    
    return start_date, end_date


# Initialize database connection
def init_db_connection():
    """Initialize database connection and check if tables exist."""
    session = get_db_session()
    
    if not session:
        return False
    
    # Check if tables exist
    from sqlalchemy.future import select
    
    try:
        # Try to query if tables exist using SQLAlchemy text()
        from sqlalchemy import text
        query = text("SELECT EXISTS (SELECT FROM information_schema.tables WHERE table_name = 'users')")
        result = run_async(session.execute(query))
        exists = result.scalar()
        
        return exists
    except Exception as e:
        # Tables might not exist yet
        print(f"Error checking database: {e}")
        return False