File size: 22,473 Bytes
bb6d7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
"""
Search History and Trends Component

This component provides UI for displaying and analyzing search history and trends.
"""
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta
import asyncio
import json
from typing import Dict, List, Any, Optional
import random

from src.api.services.search_history_service import (
    get_search_history,
    get_trending_topics,
    get_search_trend_analysis,
    get_popular_searches,
    add_search_history,
    save_search,
    create_saved_search,
    get_saved_searches
)

# For demo/placeholder data when database is not populated
def generate_demo_trends():
    """Generate demo trend data"""
    topics = [
        "ransomware", "databreach", "malware", "phishing", "zeroday",
        "darkmarket", "cryptolocker", "anonymity", "botnet", "exploit",
        "vulnerability", "trojan", "blackmarket", "identity", "creditcard",
        "hacking", "ddos", "credentials", "bitcoin", "monero"
    ]
    
    return [
        {
            "topic": topic,
            "mentions": random.randint(5, 100),
            "growth_rate": random.uniform(0.5, 25.0)
        }
        for topic in random.sample(topics, min(len(topics), 10))
    ]

def generate_demo_search_data(days=30):
    """Generate demo search frequency data"""
    base_date = datetime.now() - timedelta(days=days)
    dates = [base_date + timedelta(days=i) for i in range(days)]
    
    base_count = 10
    trend = [random.randint(max(0, base_count-5), base_count+15) for _ in range(days)]
    # Add a spike for visual interest
    spike_day = random.randint(5, days-5)
    trend[spike_day] = trend[spike_day] * 3
    
    return [
        {"interval": date, "count": count}
        for date, count in zip(dates, trend)
    ]

def generate_demo_search_categories():
    """Generate demo search categories data"""
    categories = [
        "Marketplace", "Forum", "Data Breach", "Hacking Tools", 
        "Credential Dumps", "Crypto", "Scam", "Uncategorized"
    ]
    return [
        {"category": cat, "count": random.randint(10, 100)}
        for cat in categories
    ]

def generate_demo_popular_searches():
    """Generate demo popular searches data"""
    searches = [
        "ransomware as a service", "credit card dumps", "personal data breach",
        "hacking tools", "bank account access", "identity documents", "covid vaccine cards",
        "social security numbers", "corporate credentials", "zero day exploits"
    ]
    return [
        {"query": query, "count": random.randint(5, 50)}
        for query in searches
    ]

async def get_trend_data(days=90, trend_days=7, limit=10):
    """Get trend data from the database"""
    try:
        # Create a session without context manager
        from src.streamlit_database import async_session
        session = async_session()
        
        try:
            data = await get_search_trend_analysis(
                db=session,
                days=days,
                trend_days=trend_days,
                limit=limit
            )
            await session.commit()
            return data
        except Exception as e:
            await session.rollback()
            raise e
        finally:
            await session.close()
    except Exception as e:
        st.error(f"Error fetching trend data: {e}")
        # Use demo data as fallback
        return {
            "frequency": generate_demo_search_data(days),
            "popular_searches": generate_demo_popular_searches(),
            "trending_topics": generate_demo_trends(),
            "categories": generate_demo_search_categories(),
            "recent_popular": generate_demo_popular_searches(),
            "velocity": random.uniform(-10, 30),
            "total_searches": {
                "total": 1000,
                "recent": 400,
                "previous": 600
            }
        }

async def save_search_query(query, user_id=None, category=None, tags=None):
    """Save a search query to the database"""
    try:
        # Create a session without context manager
        from src.streamlit_database import async_session
        session = async_session()
        
        try:
            search = await add_search_history(
                db=session,
                query=query,
                user_id=user_id,
                category=category,
                tags=tags,
                result_count=random.randint(5, 100)  # Placeholder
            )
            await session.commit()
            return search
        except Exception as e:
            await session.rollback()
            raise e
        finally:
            await session.close()
    except Exception as e:
        st.error(f"Error saving search: {e}")
        return None

async def get_user_searches(user_id=None, limit=50):
    """Get search history for a user"""
    try:
        # Create a session without context manager
        from src.streamlit_database import async_session
        session = async_session()
        
        try:
            searches = await get_search_history(
                db=session,
                user_id=user_id,
                limit=limit
            )
            await session.commit()
            return searches
        except Exception as e:
            await session.rollback()
            raise e
        finally:
            await session.close()
    except Exception as e:
        st.error(f"Error fetching search history: {e}")
        return []

async def get_user_saved_searches(user_id=None):
    """Get saved searches for a user"""
    try:
        # Create a session without context manager
        from src.streamlit_database import async_session
        session = async_session()
        
        try:
            searches = await get_saved_searches(
                db=session,
                user_id=user_id
            )
            await session.commit()
            return searches
        except Exception as e:
            await session.rollback()
            raise e
        finally:
            await session.close()
    except Exception as e:
        st.error(f"Error fetching saved searches: {e}")
        return []

async def create_new_saved_search(name, query, user_id=None, frequency=24, category=None):
    """Create a new saved search"""
    try:
        # Create a session without context manager
        from src.streamlit_database import async_session
        session = async_session()
        
        try:
            saved_search = await create_saved_search(
                db=session,
                name=name,
                query=query,
                user_id=user_id or 1,  # Default user ID
                frequency=frequency,
                category=category
            )
            await session.commit()
            return saved_search
        except Exception as e:
            await session.rollback()
            raise e
        finally:
            await session.close()
    except Exception as e:
        st.error(f"Error creating saved search: {e}")
        return None

def plot_search_trends(frequency_data):
    """Create a plot of search frequency over time"""
    if not frequency_data:
        return None
    
    df = pd.DataFrame(frequency_data)
    if 'interval' in df.columns:
        df['interval'] = pd.to_datetime(df['interval'])
        
        fig = px.line(
            df, 
            x='interval', 
            y='count',
            title='Search Frequency Over Time',
            labels={'interval': 'Date', 'count': 'Number of Searches'},
            template='plotly_dark'
        )
        
        fig.update_layout(
            xaxis_title="Date",
            yaxis_title="Number of Searches",
            plot_bgcolor='rgba(17, 17, 17, 0.8)',
            paper_bgcolor='rgba(17, 17, 17, 0)',
            font=dict(color='white')
        )
        
        return fig
    
    return None

def plot_category_distribution(category_data):
    """Create a plot of search categories distribution"""
    if not category_data:
        return None
    
    df = pd.DataFrame(category_data)
    
    fig = px.pie(
        df, 
        values='count', 
        names='category',
        title='Search Categories Distribution',
        template='plotly_dark',
        hole=0.4
    )
    
    fig.update_layout(
        plot_bgcolor='rgba(17, 17, 17, 0.8)',
        paper_bgcolor='rgba(17, 17, 17, 0)',
        font=dict(color='white')
    )
    
    return fig

def plot_trending_topics(trending_data):
    """Create a bar chart of trending topics"""
    if not trending_data:
        return None
    
    df = pd.DataFrame(trending_data)
    if len(df) == 0:
        return None
    
    # Sort by mentions or growth rate
    df = df.sort_values('growth_rate', ascending=False)
    
    fig = px.bar(
        df, 
        y='topic', 
        x='growth_rate',
        title='Trending Topics by Growth Rate',
        labels={'topic': 'Topic', 'growth_rate': 'Growth Rate (%)'},
        orientation='h',
        template='plotly_dark',
        color='growth_rate',
        color_continuous_scale='Viridis'
    )
    
    fig.update_layout(
        xaxis_title="Growth Rate (%)",
        yaxis_title="Topic",
        plot_bgcolor='rgba(17, 17, 17, 0.8)',
        paper_bgcolor='rgba(17, 17, 17, 0)',
        font=dict(color='white'),
        yaxis={'categoryorder': 'total ascending'}
    )
    
    return fig

def plot_popular_searches(popular_data):
    """Create a bar chart of popular searches"""
    if not popular_data:
        return None
    
    df = pd.DataFrame(popular_data)
    if len(df) == 0:
        return None
    
    df = df.sort_values('count', ascending=True)
    
    fig = px.bar(
        df, 
        y='query', 
        x='count',
        title='Most Popular Search Terms',
        labels={'query': 'Search Term', 'count': 'Number of Searches'},
        orientation='h',
        template='plotly_dark'
    )
    
    fig.update_layout(
        xaxis_title="Number of Searches",
        yaxis_title="Search Term",
        plot_bgcolor='rgba(17, 17, 17, 0.8)',
        paper_bgcolor='rgba(17, 17, 17, 0)',
        font=dict(color='white'),
        yaxis={'categoryorder': 'total ascending'}
    )
    
    return fig

def render_search_box():
    """Render the search box component"""
    st.markdown("### Search Dark Web Content")
    
    col1, col2 = st.columns([3, 1])
    
    with col1:
        search_query = st.text_input("Enter search terms", placeholder="Enter keywords to search dark web content...")
    
    with col2:
        categories = ["All Categories", "Marketplace", "Forum", "Paste Site", "Data Breach", "Hacking", "Cryptocurrency"]
        selected_category = st.selectbox("Category", categories, index=0)
        
        if selected_category == "All Categories":
            selected_category = None
    
    advanced_options = st.expander("Advanced Search Options", expanded=False)
    with advanced_options:
        col1, col2 = st.columns(2)
        
        with col1:
            date_range = st.selectbox(
                "Date Range",
                ["All Time", "Last 24 Hours", "Last 7 Days", "Last 30 Days", "Last 90 Days", "Custom Range"]
            )
            
            include_images = st.checkbox("Include Images", value=False)
            include_code = st.checkbox("Include Code Snippets", value=True)
        
        with col2:
            sources = st.multiselect(
                "Sources",
                ["Dark Forums", "Marketplaces", "Paste Sites", "Leak Sites", "Chat Channels"],
                default=["Dark Forums", "Marketplaces", "Leak Sites"]
            )
            
            sort_by = st.selectbox(
                "Sort Results By",
                ["Relevance", "Date (Newest First)", "Date (Oldest First)"]
            )
    
    tags_input = st.text_input("Tags (comma-separated)", placeholder="Add tags to organize your search...")
    
    search_button = st.button("Search Dark Web")
    
    if search_button and search_query:
        # Save search to history
        user_id = getattr(st.session_state, "user_id", None)
        
        # Process tags
        tags = tags_input.strip() if tags_input else None
        
        # Run the search
        with st.spinner("Searching dark web..."):
            search = asyncio.run(save_search_query(
                query=search_query,
                user_id=user_id,
                category=selected_category,
                tags=tags
            ))
            
            if search:
                st.success(f"Search completed: Found {search.result_count} results for '{search_query}'")
                # In a real application, we would display results here
                
                # Offer to save as a monitored search
                save_col1, save_col2 = st.columns([3, 1])
                with save_col1:
                    search_name = st.text_input(
                        "Save this search for monitoring (enter a name)",
                        placeholder="My saved search"
                    )
                with save_col2:
                    frequency = st.selectbox(
                        "Check frequency",
                        ["Manual only", "Daily", "Every 12 hours", "Every 6 hours", "Hourly"],
                        index=1
                    )
                    
                    # Map to hours
                    freq_mapping = {
                        "Manual only": 0,
                        "Daily": 24,
                        "Every 12 hours": 12,
                        "Every 6 hours": 6,
                        "Hourly": 1
                    }
                    freq_hours = freq_mapping.get(frequency, 24)
                
                if st.button("Save for Monitoring"):
                    if search_name:
                        saved = asyncio.run(create_new_saved_search(
                            name=search_name,
                            query=search_query,
                            user_id=user_id,
                            frequency=freq_hours,
                            category=selected_category
                        ))
                        
                        if saved:
                            st.success(f"Saved search '{search_name}' created successfully!")
                    else:
                        st.error("Please enter a name for your saved search")
            else:
                st.error("Failed to perform search. Please try again.")

def render_search_history():
    """Render the search history component"""
    st.markdown("### Your Search History")
    
    user_id = getattr(st.session_state, "user_id", None)
    
    # Fetch search history
    searches = asyncio.run(get_user_searches(user_id))
    
    if not searches:
        st.info("No search history found. Try searching for dark web content.")
        return
    
    # Convert to DataFrame for display
    search_data = []
    for search in searches:
        search_data.append({
            "ID": search.id,
            "Query": search.query,
            "Date": search.timestamp.strftime("%Y-%m-%d %H:%M"),
            "Results": search.result_count,
            "Category": search.category or "All",
            "Saved": "✓" if search.is_saved else ""
        })
    
    df = pd.DataFrame(search_data)
    
    # Display as table
    st.dataframe(
        df,
        use_container_width=True,
        column_config={
            "ID": st.column_config.NumberColumn(format="%d"),
            "Query": st.column_config.TextColumn(),
            "Date": st.column_config.DatetimeColumn(),
            "Results": st.column_config.NumberColumn(),
            "Category": st.column_config.TextColumn(),
            "Saved": st.column_config.TextColumn()
        }
    )

def render_saved_searches():
    """Render the saved searches component"""
    st.markdown("### Saved Searches")
    
    user_id = getattr(st.session_state, "user_id", None)
    
    # Fetch saved searches
    saved_searches = asyncio.run(get_user_saved_searches(user_id))
    
    if not saved_searches:
        st.info("No saved searches found. Save a search to monitor for new results.")
        return
    
    # Convert to DataFrame for display
    search_data = []
    for search in saved_searches:
        # Calculate next run time
        if search.last_run_at and search.frequency > 0:
            next_run = search.last_run_at + timedelta(hours=search.frequency)
        else:
            next_run = "Manual only"
        
        search_data.append({
            "ID": search.id,
            "Name": search.name,
            "Query": search.query,
            "Category": search.category or "All",
            "Frequency": f"{search.frequency}h" if search.frequency > 0 else "Manual",
            "Last Run": search.last_run_at.strftime("%Y-%m-%d %H:%M") if search.last_run_at else "Never",
            "Next Run": next_run if isinstance(next_run, str) else next_run.strftime("%Y-%m-%d %H:%M"),
            "Status": "Active" if search.is_active else "Paused"
        })
    
    df = pd.DataFrame(search_data)
    
    # Display as table
    st.dataframe(
        df,
        use_container_width=True
    )
    
    # Action buttons
    col1, col2, col3 = st.columns(3)
    
    with col1:
        if st.button("Run Selected Searches Now"):
            st.info("This would trigger manual execution of selected searches")
    
    with col2:
        if st.button("Pause Selected"):
            st.info("This would pause the selected searches")
    
    with col3:
        if st.button("Delete Selected"):
            st.info("This would delete the selected searches")

def render_trend_dashboard():
    """Render the trend dashboard component"""
    st.markdown("## Search Trends Analysis")
    
    # Time period selector
    col1, col2 = st.columns([1, 3])
    with col1:
        time_period = st.selectbox(
            "Time Period",
            ["Last 7 Days", "Last 30 Days", "Last 90 Days", "Last Year"],
            index=1
        )
        
        # Map to days
        period_mapping = {
            "Last 7 Days": 7,
            "Last 30 Days": 30,
            "Last 90 Days": 90,
            "Last Year": 365
        }
        days = period_mapping.get(time_period, 30)
    
    with col2:
        st.markdown("")  # Spacing
    
    # Fetch trend data
    with st.spinner("Loading trend data..."):
        trend_data = asyncio.run(get_trend_data(days=days))
    
    # Create layout for visualizations
    col1, col2 = st.columns(2)
    
    with col1:
        search_trend_fig = plot_search_trends(trend_data.get("frequency", []))
        if search_trend_fig:
            st.plotly_chart(search_trend_fig, use_container_width=True)
        else:
            st.error("Failed to load search trend data")
        
        popular_searches_fig = plot_popular_searches(trend_data.get("popular_searches", []))
        if popular_searches_fig:
            st.plotly_chart(popular_searches_fig, use_container_width=True)
        else:
            st.error("Failed to load popular searches data")
    
    with col2:
        trending_topics_fig = plot_trending_topics(trend_data.get("trending_topics", []))
        if trending_topics_fig:
            st.plotly_chart(trending_topics_fig, use_container_width=True)
        else:
            st.error("Failed to load trending topics data")
        
        category_fig = plot_category_distribution(trend_data.get("categories", []))
        if category_fig:
            st.plotly_chart(category_fig, use_container_width=True)
        else:
            st.error("Failed to load category distribution data")
    
    # Display trend insights
    st.markdown("### Trend Insights")
    
    col1, col2, col3 = st.columns(3)
    
    with col1:
        velocity = trend_data.get("velocity", 0)
        velocity_color = "green" if velocity > 0 else "red"
        velocity_icon = "↗️" if velocity > 0 else "↘️"
        st.markdown(f"""
        ### Search Velocity
        <h2 style="color:{velocity_color}">{velocity_icon} {abs(velocity):.1f}%</h2>
        <p>Change in search volume compared to previous period</p>
        """, unsafe_allow_html=True)
    
    with col2:
        total_searches = trend_data.get("total_searches", {}).get("total", 0)
        st.markdown(f"""
        ### Total Searches
        <h2>{total_searches:,}</h2>
        <p>Total searches in the selected period</p>
        """, unsafe_allow_html=True)
    
    with col3:
        top_topic = "None"
        top_growth = 0
        if trend_data.get("trending_topics"):
            top_item = max(trend_data["trending_topics"], key=lambda x: x.get("growth_rate", 0))
            top_topic = top_item.get("topic", "None")
            top_growth = top_item.get("growth_rate", 0)
        
        st.markdown(f"""
        ### Fastest Growing Topic
        <h2>{top_topic}</h2>
        <p>Growth rate: {top_growth:.1f}%</p>
        """, unsafe_allow_html=True)
    
    # Display emerging themes (if available)
    if trend_data.get("trending_topics"):
        st.markdown("### Emerging Dark Web Themes")
        
        # Group topics by similar growth rates
        topics = trend_data["trending_topics"]
        
        # Display as topic clusters with common themes
        theme_groups = {
            "High Growth": [t for t in topics if t.get("growth_rate", 0) > 15],
            "Moderate Growth": [t for t in topics if 5 <= t.get("growth_rate", 0) <= 15],
            "Stable": [t for t in topics if t.get("growth_rate", 0) < 5]
        }
        
        for theme, items in theme_groups.items():
            if items:
                st.markdown(f"#### {theme}")
                themes_text = ", ".join([f"{t.get('topic')} ({t.get('growth_rate', 0):.1f}%)" for t in items])
                st.markdown(f"<p>{themes_text}</p>", unsafe_allow_html=True)

def render_search_trends():
    """Main function to render the search trends component"""
    st.title("Dark Web Search & Trends")
    
    tabs = st.tabs([
        "Search Dark Web", 
        "Search History", 
        "Saved Searches",
        "Trend Analysis"
    ])
    
    with tabs[0]:
        render_search_box()
    
    with tabs[1]:
        render_search_history()
    
    with tabs[2]:
        render_saved_searches()
    
    with tabs[3]:
        render_trend_dashboard()