Spaces:
Running
Running
File size: 14,744 Bytes
bb6d7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
from datetime import datetime, timedelta
def render_reports():
st.title("Intelligence Reports")
# Report filters
with st.container():
st.subheader("Report Filters")
col1, col2, col3, col4 = st.columns(4)
with col1:
report_type = st.multiselect(
"Report Type",
["Threat Intelligence", "Data Breach", "Executive", "Technical", "Custom"],
default=["Threat Intelligence", "Data Breach"]
)
with col2:
time_period = st.selectbox(
"Time Period",
["Last 7 Days", "Last 30 Days", "Last Quarter", "Year to Date", "Custom Range"],
index=1
)
with col3:
severity = st.multiselect(
"Severity",
["Critical", "High", "Medium", "Low"],
default=["Critical", "High"]
)
with col4:
keywords = st.text_input("Keywords", placeholder="e.g. healthcare, ransomware")
# Recent reports
st.markdown("### Recent Reports")
# Sample report data
reports = [
{
"id": "RPT-2025-04083",
"title": "Healthcare Data Breach Intelligence Report",
"date": "2025-04-08",
"type": "Data Breach",
"severity": "Critical",
"status": "Final"
},
{
"id": "RPT-2025-04082",
"title": "Weekly Threat Intelligence Summary",
"date": "2025-04-08",
"type": "Threat Intelligence",
"severity": "High",
"status": "Final"
},
{
"id": "RPT-2025-04073",
"title": "Emerging Ransomware Group Analysis",
"date": "2025-04-07",
"type": "Technical",
"severity": "High",
"status": "Final"
},
{
"id": "RPT-2025-04072",
"title": "Executive Threat Landscape Overview",
"date": "2025-04-07",
"type": "Executive",
"severity": "Medium",
"status": "Final"
},
{
"id": "RPT-2025-04063",
"title": "Financial Sector Threat Assessment",
"date": "2025-04-06",
"type": "Threat Intelligence",
"severity": "High",
"status": "Final"
},
{
"id": "RPT-2025-04053",
"title": "Technical Analysis: PII Exposure in Dark Web",
"date": "2025-04-05",
"type": "Technical",
"severity": "Medium",
"status": "Final"
}
]
# Create a DataFrame
report_df = pd.DataFrame(reports)
# Report display
for i, report in enumerate(reports):
severity_color = "#E74C3C" if report["severity"] == "Critical" else "#F1C40F" if report["severity"] == "High" else "#3498DB" if report["severity"] == "Medium" else "#2ECC71"
with st.container():
cols = st.columns([4, 1, 1, 1])
with cols[0]:
st.markdown(f"#### {report['title']}")
st.caption(f"ID: {report['id']} | Date: {report['date']}")
with cols[1]:
st.markdown(f"**Type:** {report['type']}")
with cols[2]:
st.markdown(f"**<span style='color:{severity_color}'>{report['severity']}</span>**", unsafe_allow_html=True)
with cols[3]:
st.button("View", key=f"view_report_{i}")
st.markdown("---")
# Generate a report
st.markdown("### Generate New Report")
with st.form("report_generator"):
st.markdown("#### Report Parameters")
col1, col2 = st.columns(2)
with col1:
report_title = st.text_input("Report Title", placeholder="e.g. Monthly Threat Intelligence Summary")
report_type_selection = st.selectbox(
"Report Type",
["Threat Intelligence", "Data Breach", "Executive", "Technical", "Custom"]
)
with col2:
report_period = st.selectbox(
"Report Period",
["Last 7 Days", "Last 30 Days", "Last Quarter", "Year to Date", "Custom Range"]
)
if report_period == "Custom Range":
start_date = st.date_input("Start Date", datetime.now() - timedelta(days=30))
end_date = st.date_input("End Date", datetime.now())
st.markdown("#### Report Content")
include_options = st.columns(3)
with include_options[0]:
include_summary = st.checkbox("Executive Summary", value=True)
include_threats = st.checkbox("Threat Overview", value=True)
include_breaches = st.checkbox("Data Breaches", value=True)
with include_options[1]:
include_credentials = st.checkbox("Exposed Credentials", value=True)
include_ioc = st.checkbox("Indicators of Compromise", value=True)
include_actors = st.checkbox("Threat Actor Analysis", value=True)
with include_options[2]:
include_trends = st.checkbox("Trend Analysis", value=True)
include_mitigation = st.checkbox("Mitigation Recommendations", value=True)
include_references = st.checkbox("References", value=True)
st.markdown("#### Distribution")
distribution = st.multiselect(
"Distribute To",
["Security Team", "Executive Team", "IT Department", "Legal Department", "Custom Recipients"],
default=["Security Team"]
)
if "Custom Recipients" in distribution:
custom_recipients = st.text_input("Custom Recipients (separated by commas)")
generate_button = st.form_submit_button("Generate Report")
if generate_button:
st.success("Report generation initiated! Your report will be available shortly.")
# Report analytics
st.markdown("---")
st.subheader("Report Analytics")
# Report metrics
metric_col1, metric_col2, metric_col3, metric_col4 = st.columns(4)
with metric_col1:
st.metric(
label="Reports Generated",
value="87",
delta="12",
delta_color="normal"
)
with metric_col2:
st.metric(
label="Critical Reports",
value="23",
delta="5",
delta_color="normal"
)
with metric_col3:
st.metric(
label="Avg. Generation Time",
value="3.5 min",
delta="-0.8 min",
delta_color="normal"
)
with metric_col4:
st.metric(
label="Distribution Rate",
value="97%",
delta="2%",
delta_color="normal"
)
# Report analytics charts
analytics_tab1, analytics_tab2 = st.tabs(["Report Generation Trends", "Report Distribution"])
with analytics_tab1:
# Generate dates for the past 30 days
dates = [(datetime.now() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(30, 0, -1)]
# Sample data for report generation
report_data = {
'Date': dates,
'Executive': np.random.randint(0, 2, 30),
'Threat Intelligence': np.random.randint(1, 4, 30),
'Data Breach': np.random.randint(0, 3, 30),
'Technical': np.random.randint(1, 5, 30)
}
report_df = pd.DataFrame(report_data)
# Create stacked bar chart
fig = go.Figure()
fig.add_trace(go.Bar(
x=report_df['Date'],
y=report_df['Executive'],
name='Executive',
marker_color='#9B59B6'
))
fig.add_trace(go.Bar(
x=report_df['Date'],
y=report_df['Threat Intelligence'],
name='Threat Intelligence',
marker_color='#3498DB'
))
fig.add_trace(go.Bar(
x=report_df['Date'],
y=report_df['Data Breach'],
name='Data Breach',
marker_color='#E74C3C'
))
fig.add_trace(go.Bar(
x=report_df['Date'],
y=report_df['Technical'],
name='Technical',
marker_color='#2ECC71'
))
fig.update_layout(
paper_bgcolor='rgba(26, 26, 26, 0)',
plot_bgcolor='rgba(26, 26, 26, 0)',
barmode='stack',
xaxis=dict(
title="Date",
showgrid=False,
tickfont=dict(color='#ECF0F1')
),
yaxis=dict(
title="Number of Reports",
showgrid=True,
gridcolor='rgba(44, 62, 80, 0.3)',
tickfont=dict(color='#ECF0F1')
),
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
font=dict(color='#ECF0F1')
),
height=400
)
st.plotly_chart(fig, use_container_width=True)
with analytics_tab2:
# Report distribution pie chart
st.subheader("Report Distribution by Recipient")
distribution_data = {
'Recipient': ['Security Team', 'Executive Team', 'IT Department', 'Legal Department', 'Other'],
'Count': [45, 23, 31, 15, 8]
}
dist_df = pd.DataFrame(distribution_data)
fig = px.pie(
dist_df,
values='Count',
names='Recipient',
hole=0.4,
color_discrete_sequence=['#3498DB', '#9B59B6', '#2ECC71', '#F1C40F', '#E74C3C']
)
fig.update_layout(
paper_bgcolor='rgba(26, 26, 26, 0)',
plot_bgcolor='rgba(26, 26, 26, 0)',
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.2,
xanchor="center",
x=0.5,
font=dict(color='#ECF0F1')
),
margin=dict(l=0, r=0, t=0, b=10),
height=350
)
st.plotly_chart(fig, use_container_width=True)
# Sample report view
st.markdown("---")
st.subheader("Sample Report Preview")
# Report header
st.markdown("# Healthcare Data Breach Intelligence Report")
st.markdown("**Report ID:** RPT-2025-04083")
st.markdown("**Date:** April 8, 2025")
st.markdown("**Classification:** Confidential")
st.markdown("**Severity:** Critical")
# Table of contents
st.markdown("## Table of Contents")
st.markdown("""
1. Executive Summary
2. Breach Details
3. Affected Data
4. Threat Actor Analysis
5. Timeline of Events
6. Technical Indicators
7. Recommendations
8. References
""")
# Executive Summary
st.markdown("## 1. Executive Summary")
st.markdown("""
On April 7, 2025, CyberForge OSINT Platform detected evidence of a significant data breach affecting Memorial Hospital.
Patient records containing personally identifiable information (PII) and protected health information (PHI) were
discovered for sale on a prominent dark web marketplace. Initial analysis indicates approximately 50,000 patient
records may be affected. This report provides detailed analysis of the breach, indicators of compromise, and
recommended actions.
""")
# Key findings
st.info("""
**Key Findings:**
* Patient data including names, addresses, social security numbers, and medical records are being offered for sale
* The threat actor appears to be affiliated with the BlackCat ransomware group
* Initial access likely occurred between March 15-20, 2025
* The breach has not yet been publicly disclosed by the healthcare provider
* Similar tactics have been observed in other healthcare breaches in the past 60 days
""")
# Breach details
st.markdown("## 2. Breach Details")
st.markdown("""
The data breach was detected on April 7, 2025, at 22:03 UTC when our monitoring system identified a new listing
on AlphaBay marketplace offering "Complete patient database from major US hospital" for sale. The listing specifically
mentioned Memorial Hospital by name and included sample data as proof of the breach. The seller, operating under the
username "MedLeaks", is requesting 45 BTC (approximately $1.8 million USD) for the complete dataset.
""")
# Sample chart
affected_data = {
'Data Type': ['Medical Records', 'Personally Identifiable Information', 'Insurance Information', 'Billing Information', 'Staff Credentials'],
'Records': [42000, 50000, 38000, 35000, 1200]
}
affected_df = pd.DataFrame(affected_data)
fig = px.bar(
affected_df,
x='Records',
y='Data Type',
orientation='h',
color='Records',
color_continuous_scale=['#3498DB', '#F1C40F', '#E74C3C'],
height=300
)
fig.update_layout(
paper_bgcolor='rgba(26, 26, 26, 0)',
plot_bgcolor='rgba(26, 26, 26, 0)',
coloraxis_showscale=False,
xaxis=dict(
title="Number of Records",
showgrid=True,
gridcolor='rgba(44, 62, 80, 0.3)',
tickfont=dict(color='#ECF0F1')
),
yaxis=dict(
title=None,
showgrid=False,
tickfont=dict(color='#ECF0F1')
),
margin=dict(l=0, r=0, t=10, b=0)
)
st.plotly_chart(fig, use_container_width=True)
# Report actions
action_col1, action_col2, action_col3 = st.columns(3)
with action_col1:
st.download_button(
label="Download Full Report",
data="This is a placeholder for the full report download",
file_name="Healthcare_Data_Breach_Report.pdf",
mime="application/pdf"
)
with action_col2:
st.button("Share Report", key="share_report")
with action_col3:
st.button("Print Report", key="print_report")
|