Spaces:
Running
Running
File size: 31,163 Bytes
bb6d7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 |
import streamlit as st
import pandas as pd
import time
from datetime import datetime, timedelta
import random
import plotly.graph_objects as go
import trafilatura
import threading
import queue
# Global queue for storing live feed events
feed_queue = queue.Queue(maxsize=100)
# Sample dark web sources for simulation
DARK_WEB_SOURCES = [
"AlphaBay Market", "BreachForums", "XSS Forum", "RaidForums", "DeepPaste",
"BlackHat Forum", "DarkLeak Site", "HackTown", "Exploit.in", "0day.today",
"Telegram Channel: DarkLeaks", "Telegram Channel: DataBreach", "BitHunters IRC",
"Genesis Market", "ASAP Market", "Tor Network: Hidden Services", "DarkNetLive"
]
# Sample event types and severities
EVENT_TYPES = {
"Credential Leak": ["Critical", "High"],
"Data Breach": ["Critical", "High", "Medium"],
"Ransomware Activity": ["Critical", "High"],
"Hacking Tool": ["Medium", "Low"],
"Zero-day Exploit": ["Critical", "High"],
"Phishing Campaign": ["High", "Medium"],
"Dark Web Mention": ["Medium", "Low"],
"PII Exposure": ["Critical", "High"],
"New Marketplace Listing": ["Medium", "Low"],
"Threat Actor Communication": ["High", "Medium"],
"Malware Sample": ["High", "Medium", "Low"],
"Source Code Leak": ["High", "Medium"]
}
# Keywords associated with your organization
MONITORED_KEYWORDS = [
"company.com", "companyname", "company name", "CompanyX", "ServiceY", "ProductZ",
"company database", "company credentials", "company breach", "company leak",
"@company.com", "CEO Name", "CTO Name", "internal documents"
]
# Industries for sector-based alerts
INDUSTRIES = [
"Healthcare", "Finance", "Technology", "Education", "Government",
"Manufacturing", "Retail", "Energy", "Telecommunications", "Transportation"
]
def generate_live_event():
"""Generate a simulated live dark web event for demonstration"""
current_time = datetime.now()
# Choose event type and severity
event_type = random.choice(list(EVENT_TYPES.keys()))
severity = random.choice(EVENT_TYPES[event_type])
# Choose source
source = random.choice(DARK_WEB_SOURCES)
# Determine if it should mention a monitored keyword (higher chance for critical events)
mention_keyword = random.random() < (0.8 if severity == "Critical" else 0.3)
keyword = random.choice(MONITORED_KEYWORDS) if mention_keyword else None
# Choose affected industry
industry = random.choice(INDUSTRIES)
# Generate description
if keyword:
descriptions = [
f"Detected {event_type.lower()} involving {keyword}",
f"{keyword} mentioned in context of {event_type.lower()}",
f"Potential {event_type.lower()} related to {keyword}",
f"New {severity.lower()} severity {event_type.lower()} containing {keyword}",
f"Alert: {event_type} with reference to {keyword}"
]
else:
descriptions = [
f"New {event_type} affecting {industry} sector",
f"Detected {event_type.lower()} targeting {industry} organizations",
f"Emerging {event_type.lower()} with {severity.lower()} impact",
f"Potential {industry} sector {event_type.lower()} identified",
f"{severity} {event_type} observed in {source}"
]
description = random.choice(descriptions)
# Generate event ID
event_id = f"EVT-{current_time.strftime('%y%m%d')}-{random.randint(1000, 9999)}"
# Create event dictionary
event = {
"id": event_id,
"timestamp": current_time,
"event_type": event_type,
"severity": severity,
"source": source,
"description": description,
"industry": industry,
"relevant": mention_keyword
}
return event
def start_feed_generator():
"""Start background thread to generate feed events"""
def generate_events():
while True:
# Generate a new event
event = generate_live_event()
# Add to queue, remove oldest if full
if feed_queue.full():
try:
feed_queue.get_nowait()
except queue.Empty:
pass
try:
feed_queue.put_nowait(event)
except queue.Full:
pass
# Sleep random interval (2-15 seconds)
sleep_time = random.uniform(2, 15)
time.sleep(sleep_time)
# Start the background thread
thread = threading.Thread(target=generate_events, daemon=True)
thread.start()
def render_live_feed():
st.title("Real-Time Dark Web Monitoring")
# Initialize the feed generator if it's not already running
if 'feed_initialized' not in st.session_state:
start_feed_generator()
st.session_state.feed_initialized = True
st.session_state.feed_events = []
st.session_state.last_update = datetime.now()
# Dashboard layout
col1, col2, col3 = st.columns([1, 2, 1])
with col1:
st.markdown("### Monitoring Status")
# Display monitoring metrics
st.metric(
label="Active Crawlers",
value=str(random.randint(12, 18)),
delta=str(random.randint(-2, 3))
)
st.metric(
label="Sources Coverage",
value=f"{random.randint(85, 98)}%",
delta=f"{random.randint(-2, 3)}%"
)
st.metric(
label="Scan Frequency",
value=f"{random.randint(3, 7)} min",
delta=f"{random.choice([-1, -0.5, 0, 0.5])} min",
delta_color="inverse"
)
# Filters for live feed
st.markdown("### Feed Filters")
severity_filter = st.multiselect(
"Severity",
["Critical", "High", "Medium", "Low"],
default=["Critical", "High"]
)
source_type = st.multiselect(
"Source Type",
["Market", "Forum", "Telegram", "IRC", "Paste Site", "Leak Site"],
default=["Market", "Forum", "Leak Site"]
)
relevant_only = st.checkbox("Show Relevant Alerts Only", value=True)
auto_refresh = st.checkbox("Auto-Refresh Feed", value=True)
if st.button("Refresh Now"):
st.session_state.last_update = datetime.now()
with col2:
st.markdown("### Live Intelligence Feed")
# Get events from queue and merge with existing events
new_events = []
while not feed_queue.empty():
try:
new_events.append(feed_queue.get_nowait())
except queue.Empty:
break
if new_events:
st.session_state.feed_events = new_events + st.session_state.feed_events
st.session_state.feed_events = st.session_state.feed_events[:100] # Keep only 100 most recent
st.session_state.last_update = datetime.now()
# Filter events
filtered_events = []
for event in st.session_state.feed_events:
if event["severity"] in severity_filter:
if not relevant_only or event["relevant"]:
source_match = False
for s_type in source_type:
if s_type.lower() in event["source"].lower():
source_match = True
break
if source_match or not source_type:
filtered_events.append(event)
# Display last updated time
st.caption(f"Last updated: {st.session_state.last_update.strftime('%H:%M:%S')}")
# Display events
if not filtered_events:
st.info("No events match your current filters. Adjust filters or wait for new events.")
else:
for i, event in enumerate(filtered_events[:20]): # Show only 20 most recent
# Determine the color based on severity
if event["severity"] == "Critical":
severity_color = "#E74C3C"
elif event["severity"] == "High":
severity_color = "#F1C40F"
elif event["severity"] == "Medium":
severity_color = "#3498DB"
else:
severity_color = "#2ECC71"
# Event container with colored border based on severity
with st.container():
cols = st.columns([3, 1])
# Event details
with cols[0]:
st.markdown(f"""
<div style="border-left: 4px solid {severity_color}; padding-left: 10px;">
<span style="color: {severity_color}; font-weight: bold;">{event['severity']}</span> | {event['event_type']}
<br><span style="font-size: 0.9em;">{event['description']}</span>
<br><span style="font-size: 0.8em; color: #7F8C8D;">Source: {event['source']} | ID: {event['id']}</span>
</div>
""", unsafe_allow_html=True)
# Timestamp and actions
with cols[1]:
# Format time as relative (e.g., "2 mins ago")
time_diff = datetime.now() - event["timestamp"]
minutes_ago = time_diff.total_seconds() / 60
if minutes_ago < 1:
time_str = "just now"
elif minutes_ago < 60:
time_str = f"{int(minutes_ago)} min ago"
else:
hours = int(minutes_ago / 60)
time_str = f"{hours} hrs ago"
st.markdown(f"<span style='font-size: 0.8em;'>{time_str}</span>", unsafe_allow_html=True)
# Action buttons
if st.button("Investigate", key=f"investigate_{i}"):
st.session_state.selected_event = event
# Add a subtle divider
st.markdown("<hr style='margin: 5px 0; opacity: 0.2;'>", unsafe_allow_html=True)
with col3:
st.markdown("### Intelligence Summary")
# Current severity distribution
severity_counts = {"Critical": 0, "High": 0, "Medium": 0, "Low": 0}
for event in st.session_state.feed_events:
if event["severity"] in severity_counts:
severity_counts[event["severity"]] += 1
# Create donut chart for severity distribution
fig = go.Figure(go.Pie(
labels=list(severity_counts.keys()),
values=list(severity_counts.values()),
hole=.6,
marker=dict(colors=['#E74C3C', '#F1C40F', '#3498DB', '#2ECC71'])
))
fig.update_layout(
showlegend=True,
margin=dict(t=0, b=0, l=0, r=0),
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.2,
xanchor="center",
x=0.5
),
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
height=200
)
st.plotly_chart(fig, use_container_width=True)
# Top mentioned industries
st.markdown("#### Top Targeted Industries")
industry_counts = {}
for event in st.session_state.feed_events:
industry = event["industry"]
industry_counts[industry] = industry_counts.get(industry, 0) + 1
# Sort industries by count and take top 5
top_industries = sorted(industry_counts.items(), key=lambda x: x[1], reverse=True)[:5]
for industry, count in top_industries:
st.markdown(f"β’ {industry}: **{count}** alerts")
# Trending threats
st.markdown("#### Trending Threats")
event_type_counts = {}
for event in st.session_state.feed_events:
event_type = event["event_type"]
event_type_counts[event_type] = event_type_counts.get(event_type, 0) + 1
# Sort event types by count and take top 5
top_threats = sorted(event_type_counts.items(), key=lambda x: x[1], reverse=True)[:5]
for threat, count in top_threats:
st.markdown(f"β’ {threat}: **{count}** alerts")
# Add a quick investigate button for the most recent critical event
st.markdown("---")
st.markdown("#### Urgent Action Required")
critical_events = [e for e in st.session_state.feed_events if e["severity"] == "Critical"]
if critical_events:
latest_critical = critical_events[0]
st.error(f"""
**{latest_critical['event_type']}**
{latest_critical['description']}
""")
if st.button("Investigate Now", key="urgent_investigate"):
st.session_state.selected_event = latest_critical
else:
st.success("No critical events requiring urgent attention")
# If an event is selected for investigation, show details
if 'selected_event' in st.session_state and st.session_state.selected_event:
event = st.session_state.selected_event
st.markdown("---")
st.markdown("## Event Investigation")
event_col1, event_col2 = st.columns([3, 1])
with event_col1:
st.markdown(f"### {event['event_type']}")
st.markdown(f"**ID:** {event['id']}")
st.markdown(f"**Description:** {event['description']}")
st.markdown(f"**Source:** {event['source']}")
st.markdown(f"**Industry:** {event['industry']}")
st.markdown(f"**Detected:** {event['timestamp'].strftime('%Y-%m-%d %H:%M:%S')}")
st.markdown(f"**Severity:** {event['severity']}")
with event_col2:
severity_color = "#E74C3C" if event["severity"] == "Critical" else "#F1C40F" if event["severity"] == "High" else "#3498DB" if event["severity"] == "Medium" else "#2ECC71"
st.markdown(f"""
<div style="background-color: {severity_color}20; padding: 10px; border-radius: 5px; border-left: 4px solid {severity_color};">
<h4 style="margin: 0; color: {severity_color};">Risk Assessment</h4>
<p>Severity: <b>{event['severity']}</b></p>
<p>Confidence: <b>{random.randint(70, 95)}%</b></p>
<p>Impact: <b>{'High' if event['severity'] in ['Critical', 'High'] else 'Medium'}</b></p>
</div>
""", unsafe_allow_html=True)
# Tabs for different investigation aspects
inv_tab1, inv_tab2, inv_tab3 = st.tabs(["Analysis", "Similar Events", "Recommendations"])
with inv_tab1:
st.markdown("### Event Analysis")
# Simulated content analysis
st.markdown("#### Content Analysis")
st.markdown("""
This event represents a potential security incident that requires investigation.
The key indicators suggest this could be related to targeted activity against your organization
or the wider industry sector.
**Key Indicators:**
* Event type and severity level
* Source credibility assessment
* Contextual mentions and relationships
* Temporal correlation with known threat activities
""")
# Simulated indicators of compromise
st.markdown("#### Indicators of Compromise")
ioc_data = {
"IP Addresses": [f"192.168.{random.randint(1, 254)}.{random.randint(1, 254)}" for _ in range(3)],
"Domains": [f"malicious{random.randint(100, 999)}.{random.choice(['com', 'net', 'org'])}" for _ in range(2)],
"File Hashes": [f"{''.join(random.choices('0123456789abcdef', k=64))}" for _ in range(2)]
}
for ioc_type, items in ioc_data.items():
st.markdown(f"**{ioc_type}:**")
for item in items:
st.code(item)
with inv_tab2:
st.markdown("### Related Events")
# Generate a few similar events
similar_events = []
for _ in range(3):
similar_event = generate_live_event()
similar_event["event_type"] = event["event_type"]
similar_event["severity"] = random.choice(EVENT_TYPES[event["event_type"]])
similar_event["timestamp"] = event["timestamp"] - timedelta(days=random.randint(1, 30))
similar_events.append(similar_event)
# Display similar events
for i, similar in enumerate(similar_events):
with st.container():
st.markdown(f"""
**{similar['event_type']} ({similar['severity']})**
{similar['description']}
*Detected: {similar['timestamp'].strftime('%Y-%m-%d')} | Source: {similar['source']}*
""")
if i < len(similar_events) - 1:
st.markdown("---")
with inv_tab3:
st.markdown("### Recommended Actions")
# Generic recommendations based on event type
recommendations = {
"Data Breach": [
"Verify if the leaked data belongs to your organization",
"Identify affected systems and users",
"Initiate your incident response plan",
"Prepare for potential notification requirements",
"Monitor for misuse of the compromised data"
],
"Credential Leak": [
"Force password resets for affected accounts",
"Enable multi-factor authentication where possible",
"Monitor for unauthorized access attempts",
"Review privileged access controls",
"Scan for credentials used across multiple systems"
],
"Ransomware Activity": [
"Verify backup integrity and availability",
"Isolate potentially affected systems",
"Review security controls for ransomware protection",
"Assess exposure to the specific ransomware variant",
"Prepare business continuity procedures"
],
"Zero-day Exploit": [
"Assess if your systems use the affected software",
"Apply temporary mitigations or workarounds",
"Monitor vendor channels for patch availability",
"Increase monitoring for exploit attempts",
"Review defense-in-depth security controls"
],
"Phishing Campaign": [
"Alert employees about the phishing campaign",
"Block identified phishing domains and URLs",
"Scan email systems for instances of the phishing message",
"Review security awareness training materials",
"Deploy additional email security controls"
],
"Dark Web Mention": [
"Analyze context of the mention for potential threats",
"Review security for specifically mentioned assets",
"Increase monitoring for related activities",
"Brief relevant stakeholders on potential risks",
"Consider threat intelligence analysis for the mention"
]
}
# Get recommendations for the event type or use a default set
event_recommendations = recommendations.get(
event["event_type"],
["Investigate the alert details", "Assess potential impact", "Verify if your organization is affected"]
)
# Display recommendations
for rec in event_recommendations:
st.markdown(f"- {rec}")
# Action buttons
col1, col2 = st.columns(2)
with col1:
st.button("Add to Investigation Case", key="add_to_case")
with col2:
st.button("Mark as False Positive", key="mark_false_positive")
# Close investigation button
if st.button("Close Investigation", key="close_investigation"):
del st.session_state.selected_event
# Auto-refresh using a placeholder and empty to trigger rerun
if auto_refresh:
placeholder = st.empty()
time.sleep(30) # Refresh every 30 seconds
placeholder.empty()
st.rerun()
def fetch_dark_web_content(url):
"""
Fetch content from a dark web site (simulated for demonstration).
In a real application, this would connect to Tor network or similar.
Args:
url (str): The URL to fetch content from
Returns:
str: The extracted content
"""
# In a real scenario, you would use specialized tools to access dark web
# Here we'll simulate this with sample data
if "forum" in url.lower():
return """
--------- Dark Web Forum Excerpt ---------
User123: Looking for access to healthcare databases, paying premium
DarkSeller: Have fresh dump from major hospital, 50K+ patient records with PII and insurance info
User123: What's your price? Is it the Memorial Hospital data?
DarkSeller: 45 BTC for the full database. Yes, it's from Memorial plus two smaller clinics.
User456: I can vouch for DarkSeller, bought credentials last month, all valid.
DarkSeller: Sample available for serious buyers. Payment via escrow only.
"""
elif "market" in url.lower():
return """
--------- Dark Web Marketplace Listing ---------
ITEM: Complete patient database from major US hospital
SELLER: MedLeaks (Trusted Vendor β
β
β
β
β
)
PRICE: 45 BTC
DESCRIPTION:
Fresh database dump containing 50,000+ complete patient records including:
- Full names, DOB, SSN
- Home addresses and contact information
- Insurance policy details and ID numbers
- Medical diagnoses and treatment codes
- Billing information including payment methods
Data verified and ready for immediate delivery. Suitable for identity theft,
insurance fraud, or targeted phishing campaigns.
SHIPPING: Instant digital delivery via encrypted channel
TERMS: No refunds, escrow available
"""
else:
return """
--------- Dark Web Intelligence ---------
Multiple sources reporting new ransomware operation targeting healthcare sector.
Group appears to be using stolen credentials to access systems.
Identified C2 infrastructure:
- 185.212.x.x
- 91.223.x.x
- malware-delivery[.]xyz
Ransom demands ranging from 20-50 BTC depending on organization size.
Group is exfiltrating data before encryption and threatening publication.
"""
def render_content_analysis():
"""Display dark web content analysis tools"""
st.markdown("### Dark Web Content Analysis")
col1, col2 = st.columns([2, 1])
with col1:
st.markdown("Enter a URL or paste content for analysis:")
analysis_source = st.radio(
"Content Source",
["URL", "Pasted Content"],
horizontal=True
)
if analysis_source == "URL":
url = st.text_input("Enter Dark Web URL", value="darkforum.onion/thread/healthcare-data")
if st.button("Fetch Content", key="fetch_btn"):
with st.spinner("Connecting to dark web. Please wait..."):
time.sleep(2) # Simulate connection time
content = fetch_dark_web_content(url)
st.session_state.current_content = content
else:
content_input = st.text_area("Paste content for analysis", height=150)
if st.button("Analyze Content", key="analyze_pasted"):
st.session_state.current_content = content_input
with col2:
st.markdown("Analysis Options")
analysis_type = st.selectbox(
"Select Analysis Type",
["Entity Extraction", "Threat Detection", "Keyword Analysis", "IoC Extraction"]
)
st.markdown("---")
st.markdown("Monitored Keywords")
# Display monitored keywords
keyword_columns = st.columns(2)
for i, keyword in enumerate(MONITORED_KEYWORDS[:8]): # Show only first 8
with keyword_columns[i % 2]:
st.markdown(f"β’ {keyword}")
st.markdown("...")
st.markdown("---")
if st.button("Add Custom Keywords"):
st.session_state.show_keyword_input = True
if st.session_state.get("show_keyword_input", False):
new_keyword = st.text_input("Enter new keyword")
if st.button("Add Keyword"):
if new_keyword and new_keyword not in MONITORED_KEYWORDS:
MONITORED_KEYWORDS.append(new_keyword)
st.success(f"Added keyword: {new_keyword}")
# If we have content to analyze, show it and the analysis
if hasattr(st.session_state, "current_content") and st.session_state.current_content:
st.markdown("---")
tabs = st.tabs(["Content", "Analysis", "Entities", "Indicators"])
with tabs[0]:
st.markdown("### Raw Content")
st.text(st.session_state.current_content)
with tabs[1]:
st.markdown("### Content Analysis")
# Identify any monitored keywords in content
found_keywords = []
for keyword in MONITORED_KEYWORDS:
if keyword.lower() in st.session_state.current_content.lower():
found_keywords.append(keyword)
if found_keywords:
st.warning(f"Found {len(found_keywords)} monitored keywords in content:")
for keyword in found_keywords:
st.markdown(f"β’ **{keyword}**")
else:
st.info("No monitored keywords found in content.")
# Simple sentiment analysis
text = st.session_state.current_content.lower()
threat_terms = ["hack", "breach", "leak", "dump", "sell", "exploit", "vulnerability",
"ransomware", "malware", "phishing", "attack", "threat"]
threat_found = sum(term in text for term in threat_terms)
if threat_found > 3:
threat_level = "High"
color = "#E74C3C"
elif threat_found > 1:
threat_level = "Medium"
color = "#F1C40F"
else:
threat_level = "Low"
color = "#2ECC71"
st.markdown(f"**Threat Assessment: <span style='color:{color}'>{threat_level}</span>**", unsafe_allow_html=True)
st.markdown(f"Identified {threat_found} threat indicators in the content.")
with tabs[2]:
st.markdown("### Entities Extracted")
# Sample entity extraction
entities = {
"Organizations": ["Memorial Hospital", "MedLeaks"],
"Monetary Values": ["45 BTC", "20-50 BTC"],
"Quantities": ["50,000+ patient records", "50K+ patient records"],
"Locations": [],
"People": ["User123", "DarkSeller", "User456"]
}
for entity_type, items in entities.items():
if items:
st.markdown(f"#### {entity_type}")
for item in items:
st.markdown(f"β’ {item}")
with tabs[3]:
st.markdown("### Indicators of Compromise")
# Extract indicators from content
iocs = {
"IP Addresses": [],
"Domains": [],
"URLs": [],
"Hashes": []
}
# Very simple regex patterns for demo - in real system use more robust methods
ip_pattern = r'\b(?:\d{1,3}\.){3}\d{1,3}\b'
domain_pattern = r'\b(?:[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?\.)+[a-zA-Z]{2,}\b'
url_pattern = r'https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+'
hash_pattern = r'\b[a-fA-F0-9]{32,64}\b'
import re
text = st.session_state.current_content
# Find IP addresses
iocs["IP Addresses"] = re.findall(ip_pattern, text)
# Find domains
domains = re.findall(domain_pattern, text)
iocs["Domains"] = [d for d in domains if ".onion" in d or ".xyz" in d] # Filter for interesting domains
# Find URLs
iocs["URLs"] = re.findall(url_pattern, text)
# Find hashes
iocs["Hashes"] = re.findall(hash_pattern, text)
# Display found IOCs
has_iocs = False
for ioc_type, items in iocs.items():
if items:
has_iocs = True
st.markdown(f"#### {ioc_type}")
for item in items:
st.code(item)
if not has_iocs:
st.info("No indicators of compromise detected in the content.")
# Actions
col1, col2 = st.columns(2)
with col1:
st.button("Export Indicators", key="export_iocs")
with col2:
st.button("Add to Watchlist", key="add_to_watchlist") |