File size: 11,323 Bytes
bb6d7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import altair as alt
from datetime import datetime, timedelta

def render_dashboard():
    st.title("Dark Web Intelligence Dashboard")
    
    # Date range selector
    col1, col2 = st.columns([3, 1])
    
    with col1:
        st.markdown("## Overview")
        st.markdown("Real-time monitoring of dark web activities, data breaches, and emerging threats.")
    
    with col2:
        date_range = st.selectbox(
            "Time Range",
            ["Last 24 Hours", "Last 7 Days", "Last 30 Days", "Last Quarter", "Custom Range"],
            index=1
        )
    
    # Dashboard metrics row
    metric_col1, metric_col2, metric_col3, metric_col4 = st.columns(4)
    
    with metric_col1:
        st.metric(
            label="Active Threats",
            value="27",
            delta="4",
            delta_color="inverse"
        )
    
    with metric_col2:
        st.metric(
            label="Data Breaches",
            value="3",
            delta="-2",
            delta_color="normal"
        )
    
    with metric_col3:
        st.metric(
            label="Credential Leaks",
            value="1,247",
            delta="89",
            delta_color="inverse"
        )
    
    with metric_col4:
        st.metric(
            label="Threat Score",
            value="72/100",
            delta="12",
            delta_color="inverse"
        )
    
    # First row - Threat map and category distribution
    row1_col1, row1_col2 = st.columns([2, 1])
    
    with row1_col1:
        st.subheader("Global Threat Origin Map")
        
        # World map of threat origins
        fig = go.Figure(data=go.Choropleth(
            locations=['USA', 'RUS', 'CHN', 'IRN', 'PRK', 'UKR', 'DEU', 'GBR', 'CAN', 'BRA', 'IND'],
            z=[25, 42, 37, 30, 28, 18, 15, 20, 12, 14, 23],
            colorscale='Reds',
            autocolorscale=False,
            reversescale=False,
            marker_line_color='#2C3E50',
            marker_line_width=0.5,
            colorbar_title='Threat<br>Index',
        ))

        fig.update_layout(
            geo=dict(
                showframe=False,
                showcoastlines=True,
                projection_type='equirectangular',
                bgcolor='rgba(26, 26, 26, 0)',
                coastlinecolor='#2C3E50',
                landcolor='#1A1A1A',
                oceancolor='#2C3E50',
            ),
            paper_bgcolor='rgba(26, 26, 26, 0)',
            plot_bgcolor='rgba(26, 26, 26, 0)',
            margin=dict(l=0, r=0, t=0, b=0),
            height=400,
        )
        
        st.plotly_chart(fig, use_container_width=True)
    
    with row1_col2:
        st.subheader("Threat Categories")
        
        # Threat category distribution
        categories = ['Data Breach', 'Ransomware', 'Phishing', 'Malware', 'Identity Theft']
        values = [38, 24, 18, 14, 6]
        
        fig = px.pie(
            names=categories,
            values=values,
            hole=0.6,
            color_discrete_sequence=['#E74C3C', '#F1C40F', '#3498DB', '#2ECC71', '#9B59B6']
        )
        
        fig.update_layout(
            paper_bgcolor='rgba(26, 26, 26, 0)',
            plot_bgcolor='rgba(26, 26, 26, 0)',
            showlegend=True,
            legend=dict(
                orientation="v",
                yanchor="middle",
                y=0.5,
                xanchor="center",
                x=0.5
            ),
            margin=dict(l=0, r=0, t=30, b=0),
            height=300,
        )
        
        st.plotly_chart(fig, use_container_width=True)
    
    # Second row - Trend and recent activities
    row2_col1, row2_col2 = st.columns([3, 2])
    
    with row2_col1:
        st.subheader("Threat Activity Trend")
        
        # Generate dates for the past 14 days
        dates = [(datetime.now() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(14, 0, -1)]
        
        # Sample data for threats over time
        threat_data = {
            'Date': dates,
            'High': [12, 10, 15, 11, 14, 16, 18, 20, 17, 12, 14, 13, 19, 22],
            'Medium': [23, 25, 22, 20, 24, 25, 26, 24, 22, 21, 23, 25, 28, 27],
            'Low': [32, 30, 35, 34, 36, 33, 30, 34, 38, 37, 35, 34, 32, 30]
        }
        
        df = pd.DataFrame(threat_data)
        
        # Create stacked area chart
        fig = go.Figure()
        
        fig.add_trace(go.Scatter(
            x=df['Date'], y=df['High'],
            mode='lines',
            line=dict(width=0.5, color='#E74C3C'),
            stackgroup='one',
            name='High'
        ))
        
        fig.add_trace(go.Scatter(
            x=df['Date'], y=df['Medium'],
            mode='lines',
            line=dict(width=0.5, color='#F1C40F'),
            stackgroup='one',
            name='Medium'
        ))
        
        fig.add_trace(go.Scatter(
            x=df['Date'], y=df['Low'],
            mode='lines',
            line=dict(width=0.5, color='#2ECC71'),
            stackgroup='one',
            name='Low'
        ))
        
        fig.update_layout(
            paper_bgcolor='rgba(26, 26, 26, 0)',
            plot_bgcolor='rgba(26, 26, 26, 0)',
            legend=dict(
                orientation="h",
                yanchor="bottom",
                y=1.02,
                xanchor="right",
                x=1
            ),
            margin=dict(l=0, r=0, t=30, b=0),
            xaxis=dict(
                showgrid=False,
                title=None,
                tickfont=dict(color='#ECF0F1')
            ),
            yaxis=dict(
                showgrid=True,
                gridcolor='rgba(44, 62, 80, 0.3)',
                title=None,
                tickfont=dict(color='#ECF0F1')
            ),
            height=300
        )
        
        st.plotly_chart(fig, use_container_width=True)
    
    with row2_col2:
        st.subheader("Recent Intelligence Feeds")
        
        # Recent dark web activities
        activities = [
            {"time": "10 mins ago", "event": "New ransomware group identified", "severity": "High"},
            {"time": "43 mins ago", "event": "Database with 50K credentials for sale", "severity": "High"},
            {"time": "2 hours ago", "event": "Zero-day exploit being discussed", "severity": "Medium"},
            {"time": "3 hours ago", "event": "New phishing campaign detected", "severity": "Medium"},
            {"time": "5 hours ago", "event": "PII data from financial institution leaked", "severity": "High"}
        ]
        
        for activity in activities:
            severity_color = "#E74C3C" if activity["severity"] == "High" else "#F1C40F" if activity["severity"] == "Medium" else "#2ECC71"
            
            cols = st.columns([1, 4, 1])
            cols[0].caption(activity["time"])
            cols[1].markdown(activity["event"])
            cols[2].markdown(f"<span style='color:{severity_color}'>{activity['severity']}</span>", unsafe_allow_html=True)
            
            st.markdown("---")
    
    # Third row - Sectors at risk and trending keywords
    row3_col1, row3_col2 = st.columns(2)
    
    with row3_col1:
        st.subheader("Sectors at Risk")
        
        # Horizontal bar chart for sectors at risk
        sectors = ['Healthcare', 'Finance', 'Technology', 'Education', 'Government', 'Manufacturing']
        risk_scores = [87, 82, 75, 63, 78, 56]
        
        sector_data = pd.DataFrame({
            'Sector': sectors,
            'Risk Score': risk_scores
        })
        
        fig = px.bar(
            sector_data,
            x='Risk Score',
            y='Sector',
            orientation='h',
            color='Risk Score',
            color_continuous_scale=['#2ECC71', '#F1C40F', '#E74C3C'],
            range_color=[50, 100]
        )
        
        fig.update_layout(
            paper_bgcolor='rgba(26, 26, 26, 0)',
            plot_bgcolor='rgba(26, 26, 26, 0)',
            margin=dict(l=0, r=0, t=0, b=0),
            height=250,
            coloraxis_showscale=False,
            xaxis=dict(
                showgrid=False,
                title=None,
                tickfont=dict(color='#ECF0F1')
            ),
            yaxis=dict(
                showgrid=False,
                title=None,
                tickfont=dict(color='#ECF0F1')
            )
        )
        
        st.plotly_chart(fig, use_container_width=True)
    
    with row3_col2:
        st.subheader("Trending Keywords")
        
        # Word cloud alternative - trending keywords with frequency
        keywords = [
            {"word": "ransomware", "count": 42},
            {"word": "zero-day", "count": 37},
            {"word": "botnet", "count": 31},
            {"word": "credentials", "count": 28},
            {"word": "bitcoin", "count": 25},
            {"word": "exploit", "count": 23},
            {"word": "malware", "count": 21},
            {"word": "backdoor", "count": 18},
            {"word": "phishing", "count": 16},
            {"word": "darknet", "count": 15}
        ]
        
        keyword_data = pd.DataFrame(keywords)
        
        # Calculate sizes for visual representation
        max_count = max(keyword_data['count'])
        keyword_data['size'] = keyword_data['count'].apply(lambda x: int((x / max_count) * 100) + 70)
        
        # Create a simple horizontal bar to represent frequency
        chart = alt.Chart(keyword_data).mark_bar().encode(
            x=alt.X('count:Q', title=None),
            y=alt.Y('word:N', title=None, sort='-x'),
            color=alt.Color('count:Q', scale=alt.Scale(scheme='reds'), legend=None)
        ).properties(
            height=250
        )
        
        st.altair_chart(chart, use_container_width=True)
    
    # Fourth row - Latest intelligence reports
    st.subheader("Latest Intelligence Reports")
    
    reports = [
        {
            "title": "Major Healthcare Breach Analysis",
            "date": "2025-04-08",
            "summary": "Analysis of recent healthcare data breach affecting over 500,000 patient records.",
            "severity": "Critical"
        },
        {
            "title": "Emerging Ransomware Group Activities",
            "date": "2025-04-07",
            "summary": "New ransomware group targeting financial institutions with sophisticated techniques.",
            "severity": "High"
        },
        {
            "title": "Credential Harvesting Campaign",
            "date": "2025-04-05",
            "summary": "Widespread phishing campaign targeting corporate credentials across multiple sectors.",
            "severity": "Medium"
        }
    ]
    
    row4_cols = st.columns(3)
    
    for i, report in enumerate(reports):
        with row4_cols[i]:
            severity_color = "#E74C3C" if report["severity"] == "Critical" else "#F1C40F" if report["severity"] == "High" else "#2ECC71"
            
            st.markdown(f"#### {report['title']}")
            st.markdown(f"<span style='color:{severity_color}'>{report['severity']}</span> | {report['date']}", unsafe_allow_html=True)
            st.markdown(report["summary"])
            st.button("View Full Report", key=f"report_{i}")