File size: 18,738 Bytes
bb6d7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
from datetime import datetime, timedelta

def render_alerts():
    st.title("Alert Management")
    
    # Alert Overview
    st.subheader("Alert Overview")
    
    # Alert metrics
    col1, col2, col3, col4, col5 = st.columns(5)
    
    with col1:
        st.metric(
            label="Active Alerts",
            value="27",
            delta="4",
            delta_color="inverse"
        )
    
    with col2:
        st.metric(
            label="Critical",
            value="8",
            delta="2",
            delta_color="inverse"
        )
    
    with col3:
        st.metric(
            label="High",
            value="12",
            delta="3",
            delta_color="inverse"
        )
    
    with col4:
        st.metric(
            label="Medium",
            value="5",
            delta="-1",
            delta_color="normal"
        )
    
    with col5:
        st.metric(
            label="Low",
            value="2",
            delta="0",
            delta_color="normal"
        )
    
    # Filters for alerts
    with st.container():
        st.markdown("### Alert Filters")
        
        filter_col1, filter_col2, filter_col3, filter_col4 = st.columns(4)
        
        with filter_col1:
            severity_filter = st.multiselect(
                "Severity",
                ["Critical", "High", "Medium", "Low"],
                default=["Critical", "High", "Medium", "Low"]
            )
        
        with filter_col2:
            status_filter = st.multiselect(
                "Status",
                ["New", "In Progress", "Resolved", "False Positive"],
                default=["New", "In Progress"]
            )
        
        with filter_col3:
            date_range = st.selectbox(
                "Time Range",
                ["Last 24 Hours", "Last 7 Days", "Last 30 Days", "Custom Range"],
                index=1
            )
        
        with filter_col4:
            category_filter = st.multiselect(
                "Category",
                ["Data Breach", "Ransomware", "Credentials", "PII", "Brand Abuse", "Source Code", "Other"],
                default=["Data Breach", "Credentials", "PII"]
            )
    
    # Alert list
    st.markdown("### Active Alerts")
    
    # Sample alert data
    alerts = [
        {
            "id": "ALERT-2025-04081",
            "timestamp": "2025-04-08 14:32:21",
            "severity": "Critical",
            "category": "Data Breach",
            "description": "Patient records from Memorial Hospital found on dark web marketplace.",
            "status": "New",
            "source": "AlphaBay Market"
        },
        {
            "id": "ALERT-2025-04082",
            "timestamp": "2025-04-08 10:15:43",
            "severity": "Critical",
            "category": "Ransomware",
            "description": "Company mentioned in ransomware group's leak site as new victim.",
            "status": "New",
            "source": "BlackCat Leak Site"
        },
        {
            "id": "ALERT-2025-04083",
            "timestamp": "2025-04-08 08:42:19",
            "severity": "High",
            "category": "Credentials",
            "description": "123 employee credentials found in new breach compilation.",
            "status": "In Progress",
            "source": "BreachForums"
        },
        {
            "id": "ALERT-2025-04071",
            "timestamp": "2025-04-07 22:03:12",
            "severity": "High",
            "category": "PII",
            "description": "Customer PII being offered for sale on hacking forum.",
            "status": "In Progress",
            "source": "XSS Forum"
        },
        {
            "id": "ALERT-2025-04072",
            "timestamp": "2025-04-07 18:37:56",
            "severity": "Medium",
            "category": "Brand Abuse",
            "description": "Phishing campaign using company brand assets detected.",
            "status": "New",
            "source": "Telegram Channel"
        },
        {
            "id": "ALERT-2025-04073",
            "timestamp": "2025-04-07 14:21:08",
            "severity": "Medium",
            "category": "Source Code",
            "description": "Fragments of internal source code shared in paste site.",
            "status": "In Progress",
            "source": "DeepPaste"
        },
        {
            "id": "ALERT-2025-04063",
            "timestamp": "2025-04-06 20:15:37",
            "severity": "Low",
            "category": "Credentials",
            "description": "Legacy system credentials posted in hacking forum.",
            "status": "New",
            "source": "RaidForums"
        }
    ]
    
    # Create a dataframe for the alerts
    alert_df = pd.DataFrame(alerts)
    
    # Apply colors to severity column
    def color_severity(val):
        color_map = {
            'Critical': '#E74C3C',
            'High': '#F1C40F',
            'Medium': '#3498DB',
            'Low': '#2ECC71'
        }
        return f'background-color: {color_map.get(val, "#ECF0F1")}'
    
    # Style the dataframe
    styled_df = alert_df.style.applymap(color_severity, subset=['severity'])
    
    # Display the table
    st.dataframe(styled_df, use_container_width=True, height=300)
    
    # Action buttons for alerts
    action_col1, action_col2, action_col3, action_col4, action_col5 = st.columns(5)
    
    with action_col1:
        st.button("Investigate", key="investigate_alert")
    
    with action_col2:
        st.button("Mark as Resolved", key="resolve_alert")
    
    with action_col3:
        st.button("Assign to Analyst", key="assign_alert")
    
    with action_col4:
        st.button("Mark as False Positive", key="false_positive")
    
    with action_col5:
        st.button("Generate Report", key="generate_report")
    
    # Alert visualization
    st.markdown("### Alert Analytics")
    
    # Tabs for different alert visualizations
    tab1, tab2, tab3 = st.tabs(["Alert Trend", "Category Distribution", "Source Analysis"])
    
    with tab1:
        # Alert trend over time
        st.subheader("Alert Trend (Last 30 Days)")
        
        # Generate dates for the past 30 days
        dates = [(datetime.now() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(30, 0, -1)]
        
        # Sample data for alert trends
        critical_alerts = np.random.randint(5, 12, 30)
        high_alerts = np.random.randint(8, 20, 30)
        medium_alerts = np.random.randint(12, 25, 30)
        low_alerts = np.random.randint(15, 30, 30)
        
        trend_data = pd.DataFrame({
            'Date': dates,
            'Critical': critical_alerts,
            'High': high_alerts,
            'Medium': medium_alerts,
            'Low': low_alerts
        })
        
        # Create a stacked area chart
        fig = go.Figure()
        
        fig.add_trace(go.Scatter(
            x=trend_data['Date'], y=trend_data['Critical'],
            mode='lines',
            line=dict(width=0.5, color='#E74C3C'),
            stackgroup='one',
            name='Critical'
        ))
        
        fig.add_trace(go.Scatter(
            x=trend_data['Date'], y=trend_data['High'],
            mode='lines',
            line=dict(width=0.5, color='#F1C40F'),
            stackgroup='one',
            name='High'
        ))
        
        fig.add_trace(go.Scatter(
            x=trend_data['Date'], y=trend_data['Medium'],
            mode='lines',
            line=dict(width=0.5, color='#3498DB'),
            stackgroup='one',
            name='Medium'
        ))
        
        fig.add_trace(go.Scatter(
            x=trend_data['Date'], y=trend_data['Low'],
            mode='lines',
            line=dict(width=0.5, color='#2ECC71'),
            stackgroup='one',
            name='Low'
        ))
        
        fig.update_layout(
            paper_bgcolor='rgba(26, 26, 26, 0)',
            plot_bgcolor='rgba(26, 26, 26, 0)',
            legend=dict(
                orientation="h",
                yanchor="bottom",
                y=1.02,
                xanchor="right",
                x=1
            ),
            margin=dict(l=0, r=0, t=30, b=0),
            xaxis=dict(
                showgrid=False,
                title=None,
                tickfont=dict(color='#ECF0F1')
            ),
            yaxis=dict(
                showgrid=True,
                gridcolor='rgba(44, 62, 80, 0.3)',
                title="Alert Count",
                tickfont=dict(color='#ECF0F1')
            ),
            height=400
        )
        
        st.plotly_chart(fig, use_container_width=True)
    
    with tab2:
        # Alert distribution by category
        st.subheader("Alert Category Distribution")
        
        # Sample data for categories
        categories = ['Data Breach', 'Credentials', 'PII', 'Ransomware', 'Brand Abuse', 'Source Code', 'Infrastructure', 'Other']
        counts = [35, 28, 18, 12, 8, 6, 4, 2]
        
        category_data = pd.DataFrame({
            'Category': categories,
            'Count': counts
        })
        
        # Create a horizontal bar chart
        fig = px.bar(
            category_data,
            y='Category',
            x='Count',
            orientation='h',
            color='Count',
            color_continuous_scale=['#2ECC71', '#3498DB', '#F1C40F', '#E74C3C'],
            height=400
        )
        
        fig.update_layout(
            paper_bgcolor='rgba(26, 26, 26, 0)',
            plot_bgcolor='rgba(26, 26, 26, 0)',
            coloraxis_showscale=False,
            xaxis=dict(
                title="Number of Alerts",
                showgrid=True,
                gridcolor='rgba(44, 62, 80, 0.3)',
                tickfont=dict(color='#ECF0F1')
            ),
            yaxis=dict(
                title=None,
                showgrid=False,
                tickfont=dict(color='#ECF0F1')
            ),
            margin=dict(l=0, r=0, t=30, b=0)
        )
        
        st.plotly_chart(fig, use_container_width=True)
    
    with tab3:
        # Alert sources analysis
        st.subheader("Alert Sources")
        
        # Sample data for sources
        sources = ['Dark Web Markets', 'Hacking Forums', 'Paste Sites', 'Telegram Channels', 'Ransomware Blogs', 'IRC Channels', 'Social Media']
        source_counts = [32, 27, 18, 15, 10, 7, 4]
        
        source_data = pd.DataFrame({
            'Source': sources,
            'Count': source_counts
        })
        
        # Create a pie chart
        fig = px.pie(
            source_data,
            values='Count',
            names='Source',
            hole=0.4,
            color_discrete_sequence=['#E74C3C', '#F1C40F', '#3498DB', '#2ECC71', '#9B59B6', '#E67E22', '#1ABC9C']
        )
        
        fig.update_layout(
            paper_bgcolor='rgba(26, 26, 26, 0)',
            plot_bgcolor='rgba(26, 26, 26, 0)',
            showlegend=True,
            legend=dict(
                orientation="h",
                yanchor="bottom",
                y=-0.2,
                xanchor="center",
                x=0.5,
                font=dict(color='#ECF0F1')
            ),
            margin=dict(l=0, r=0, t=30, b=0),
            height=400
        )
        
        st.plotly_chart(fig, use_container_width=True)
    
    # Alert rules configuration
    st.markdown("---")
    st.subheader("Alert Rules Configuration")
    
    # Tabs for different rule categories
    rule_tab1, rule_tab2 = st.tabs(["Active Rules", "Rule Editor"])
    
    with rule_tab1:
        # Sample data for alert rules
        alert_rules = pd.DataFrame({
            "Rule Name": [
                "Critical Data Breach Detection",
                "Ransomware Victim Monitoring",
                "Employee Credential Exposure",
                "Source Code Leak Detection",
                "Brand Impersonation Alert",
                "Executive PII Monitoring",
                "Infrastructure Exposure"
            ],
            "Category": ["Data Breach", "Ransomware", "Credentials", "Source Code", "Brand Abuse", "PII", "Infrastructure"],
            "Severity": ["Critical", "Critical", "High", "High", "Medium", "Critical", "Medium"],
            "Sources": ["All", "Leak Sites", "Paste Sites, Forums", "Paste Sites, Forums", "All", "All", "Forums, Markets"],
            "Status": ["Active", "Active", "Active", "Active", "Active", "Active", "Active"]
        })
        
        # Display rules table
        st.dataframe(alert_rules, use_container_width=True)
        
        # Rule action buttons
        rule_col1, rule_col2, rule_col3, rule_col4 = st.columns(4)
        
        with rule_col1:
            st.button("Create New Rule", key="new_rule")
        
        with rule_col2:
            st.button("Edit Selected", key="edit_rule")
        
        with rule_col3:
            st.button("Duplicate", key="duplicate_rule")
        
        with rule_col4:
            st.button("Disable", key="disable_rule")
    
    with rule_tab2:
        # Rule editor form
        with st.form("rule_editor"):
            st.markdown("### Rule Editor")
            
            rule_name = st.text_input("Rule Name", value="New Alert Rule")
            
            editor_col1, editor_col2 = st.columns(2)
            
            with editor_col1:
                rule_category = st.selectbox(
                    "Category",
                    ["Data Breach", "Ransomware", "Credentials", "PII", "Brand Abuse", "Source Code", "Infrastructure", "Other"]
                )
                
                rule_severity = st.selectbox(
                    "Severity",
                    ["Critical", "High", "Medium", "Low"]
                )
            
            with editor_col2:
                rule_sources = st.multiselect(
                    "Monitoring Sources",
                    ["Dark Web Markets", "Hacking Forums", "Paste Sites", "Leak Sites", "Telegram Channels", "IRC Channels", "Social Media", "All"],
                    default=["All"]
                )
                
                rule_status = st.selectbox(
                    "Status",
                    ["Active", "Disabled"]
                )
            
            st.markdown("### Rule Conditions")
            
            condition_type = st.selectbox(
                "Condition Type",
                ["Keyword Match", "Regular Expression", "Data Pattern", "Complex Query"]
            )
            
            if condition_type == "Keyword Match":
                keywords = st.text_area("Keywords (one per line)", height=100)
                
                keyword_options = st.columns(3)
                with keyword_options[0]:
                    case_sensitive = st.checkbox("Case Sensitive", value=False)
                with keyword_options[1]:
                    whole_word = st.checkbox("Whole Word Only", value=False)
                with keyword_options[2]:
                    proximity = st.checkbox("Proximity Search", value=False)
            
            elif condition_type == "Regular Expression":
                regex_pattern = st.text_area("Regular Expression Pattern", height=100)
                
                regex_options = st.columns(2)
                with regex_options[0]:
                    test_regex = st.button("Test RegEx")
                with regex_options[1]:
                    validate_regex = st.button("Validate Pattern")
            
            elif condition_type == "Data Pattern":
                data_patterns = st.multiselect(
                    "Data Patterns to Detect",
                    ["Email Addresses", "Credit Card Numbers", "Social Security Numbers", "Phone Numbers", "IP Addresses", "API Keys", "Passwords"]
                )
            
            elif condition_type == "Complex Query":
                complex_query = st.text_area("Complex Query", height=100, 
                                            placeholder="Example: (keyword1 OR keyword2) AND (keyword3) NOT (keyword4)")
            
            st.markdown("### Response Actions")
            
            notification_channels = st.multiselect(
                "Notification Channels",
                ["Email", "Slack", "API Webhook", "SMS"],
                default=["Email", "Slack"]
            )
            
            auto_actions = st.multiselect(
                "Automated Actions",
                ["Create Incident Ticket", "Add to Watchlist", "Block in Firewall", "None"],
                default=["Create Incident Ticket"]
            )
            
            submit_rule = st.form_submit_button("Save Rule")
            
            if submit_rule:
                st.success("Alert rule saved successfully!")
    
    # Alert notification settings
    st.markdown("---")
    st.subheader("Alert Notification Settings")
    
    # Notification channels
    notif_col1, notif_col2 = st.columns(2)
    
    with notif_col1:
        st.markdown("### Notification Channels")
        
        with st.container():
            st.checkbox("Email Notifications", value=True)
            st.text_input("Email Recipients", value="[email protected], [email protected]")
            
            st.checkbox("Slack Notifications", value=True)
            st.text_input("Slack Channel", value="#security-alerts")
            
            st.checkbox("SMS Notifications", value=False)
            st.text_input("Phone Numbers", placeholder="+1234567890, +0987654321")
            
            st.checkbox("API Webhook", value=False)
            st.text_input("Webhook URL", placeholder="https://api.example.com/webhook")
    
    with notif_col2:
        st.markdown("### Notification Schedule")
        
        with st.container():
            notify_critical = st.radio(
                "Critical Alerts",
                ["Immediate", "Hourly Digest", "Daily Digest"],
                index=0
            )
            
            notify_high = st.radio(
                "High Alerts",
                ["Immediate", "Hourly Digest", "Daily Digest"],
                index=1
            )
            
            notify_medium = st.radio(
                "Medium Alerts",
                ["Immediate", "Hourly Digest", "Daily Digest"],
                index=2
            )
            
            notify_low = st.radio(
                "Low Alerts",
                ["Immediate", "Hourly Digest", "Daily Digest"],
                index=2
            )
    
    # Save alert settings button
    st.button("Save Notification Settings", type="primary", key="save_notif")