import gradio as gr import torch import numpy as np import json import time from transformers import AutoTokenizer import os import importlib from huggingface_hub import hf_hub_download from llama_diffusion_model import CustomTransformerModel, CustomTransformerConfig, BidirectionalLlamaAttention, disable_dropout import spaces hf_token = os.getenv("HF_TOKEN") # --- Load tokenizer --- tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B", use_fast=True, token=hf_token) vocab_size = len(tokenizer) pad_token = tokenizer.pad_token_id or tokenizer.eos_token_id eot_token_id = tokenizer.eos_token_id assistant_marker_ids = tokenizer.encode("Assistant:", add_special_tokens=False) # --- Load token probabilities --- with open("token_probabilities.json") as f: token_probs_dict = json.load(f) token_probabilities = np.array([token_probs_dict[str(i)] for i in range(len(token_probs_dict))], dtype=np.float32) # def load_model(): # ckpt_path = hf_hub_download( # repo_id="ruurd/tini_bi_m", # filename="diffusion-model.pth", # token=os.getenv("HF_TOKEN") # ) # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # model = torch.load(ckpt_path, map_location=device) # model = disable_dropout(model) # model.to(device) # model.eval() # return model def load_model(): ckpt_path = hf_hub_download( repo_id="ruurd/tini_bi", filename="diffusion-model.pth", token=os.getenv("HF_TOKEN"), revision="5a22a8b6168466dbbf704efd00d8cbf2eee51426", ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Step 1: Create model from scratch model = CustomTransformerModel(CustomTransformerConfig()) # Step 2: Load state_dict from full checkpoint full_model = torch.load(ckpt_path, map_location=device) # This handles both full model or just state_dict try: state_dict = full_model.state_dict() except AttributeError: state_dict = full_model # already a state_dict # Step 3: Load weights (might print mismatches) missing, unexpected = model.load_state_dict(state_dict, strict=False) print("Missing keys:", missing) print("Unexpected keys:", unexpected) model = disable_dropout(model) model.to(device) model.eval() return model rng = np.random.default_rng() # --- Utility Functions --- def decode_tokens_safe(token_ids): return tokenizer.decode(token_ids, skip_special_tokens=True).replace("\n", " ") def find_answer_start(input_ids, marker_ids): for i in range(len(input_ids) - len(marker_ids) + 1): if input_ids[i:i + len(marker_ids)] == marker_ids: return i + len(marker_ids) return None def get_noising_schedule(i, max_it, sharpness=5.0): x = i / max_it return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness)) def noisify_answer(input_ids, answer_start, threshold=1.0, eot_weight=1.0, mask_weight=0.0, clustering=0.5, noise_start = 1.0): noised = input_ids.copy() answer_len = len(noised) - answer_start num_to_noise = int(threshold * answer_len * noise_start) mask_token_id = tokenizer.encode('MASK', add_special_tokens = False)[0] if num_to_noise == 0: return noised, [] mixed_probs = token_probabilities.copy() # Apply EOT weighting mixed_probs[eot_token_id] *= eot_weight # Scale all other probabilities so they sum to 1 - mask_weight total_other = mixed_probs.sum() - mixed_probs[mask_token_id] scale = (1.0 - mask_weight) / total_other mixed_probs *= scale # Set mask_token_id to mask_weight explicitly mixed_probs[mask_token_id] = mask_weight num_clusters = max(1, int((1 - clustering) * num_to_noise)) cluster_size = max(1, int(num_to_noise / num_clusters)) noised_indices = set() for _ in range(num_clusters): center = rng.integers(answer_start, len(noised)) span_start = max(answer_start, center - cluster_size // 2) span_end = min(len(noised), span_start + cluster_size) noised_indices.update(range(span_start, span_end)) noised_indices = sorted(list(noised_indices))[:num_to_noise] noise = rng.choice(np.arange(vocab_size), size=len(noised_indices), p=mixed_probs) for idx, val in zip(noised_indices, noise): noised[idx] = val return noised, noised_indices # Add new noising function def confidence_guided_noising(input_ids, answer_start, confidences, noise_clipping, threshold=1.0, eot_weight = 1.0, mask_weight = 0.0, noise_start = 1.0): noised = input_ids.copy() answer_len = len(input_ids) - answer_start num_to_noise = int(threshold * answer_len * noise_start) mask_token_id = tokenizer.encode('MASK', add_special_tokens = False)[0] if num_to_noise == 0: return noised raw_weights = 1.0 - np.array(confidences[answer_start:]) # Avoid zero-probability weights for selection # If noise clipping == 1, all tokens have equal chance to be noised. # If noise_clipping == 0.00001, all tokens are noised according to the confidence of the past prediction raw_weights = np.clip(raw_weights, a_min = noise_clipping, a_max = None) weights = raw_weights / raw_weights.sum() if num_to_noise > len(weights): num_to_noise = len(weights) # prevent oversampling indices = rng.choice( np.arange(answer_start, len(input_ids)), size=num_to_noise, replace=False, p=weights ) mixed_probs = token_probabilities.copy() # Apply EOT weighting mixed_probs[eot_token_id] *= eot_weight # Scale all other probabilities so they sum to 1 - mask_weight total_other = mixed_probs.sum() - mixed_probs[mask_token_id] scale = (1.0 - mask_weight) / total_other mixed_probs *= scale # Set mask_token_id to mask_weight explicitly mixed_probs[mask_token_id] = mask_weight noise = rng.choice(np.arange(vocab_size), size=num_to_noise, p=mixed_probs) for idx, val in zip(indices, noise): noised[idx] = val return noised @spaces.GPU def generate_diffusion_text(input_ids): with torch.no_grad(): input_tensor = torch.tensor([input_ids], dtype=torch.long).to(model.device) logits = model(input_ids=input_tensor)["logits"] logits = logits.clamp(min=-1e4, max=1e4) probs = torch.nn.functional.softmax(logits, dim=-1)[0] probs = torch.clamp(probs, min=1e-8, max=1.0) assert torch.all(torch.isfinite(probs)), "Non-finite values in probs!" assert (probs >= 0).all(), "Negative probs!" sampled = torch.multinomial(probs, num_samples=1).squeeze(-1).tolist() # Extract confidence of selected tokens conf = probs[range(len(sampled)), sampled].cpu().numpy() return sampled, conf # --- Inference Wrapper --- def diffusion_chat(question, eot_weight, mask_weight, max_it, pause_length, sharpness, clustering, noise_start, use_confidence_noising, noise_clipping): placeholder = "What do you know about the city of New York?" if question.strip() == "": question = placeholder print('started generation') prompt = f"User: {question}\nAssistant:" input_ids = tokenizer.encode(prompt, add_special_tokens=False) answer_start = find_answer_start(input_ids, assistant_marker_ids) if answer_start is None: yield "Error: Could not find Assistant marker in input." return if len(input_ids) < 256: input_ids += [pad_token] * (256 - len(input_ids)) else: input_ids = input_ids[:256] ori_input_tokens = input_ids current_tokens, just_noised_indices = noisify_answer( input_ids, answer_start, threshold=1.0, eot_weight=eot_weight, mask_weight=mask_weight, clustering=clustering, noise_start = 1.0, ) yield f"Iteration 0 (initial noise):
" + tokenizer.decode(current_tokens[answer_start:], skip_special_tokens=True).replace('\n', '
') time.sleep(pause_length) last_tokens = [] prev_decoded_tokens = [] for i in range(max_it): print('Generating output') # Model step generated_tokens, confidences = generate_diffusion_text(current_tokens) # Save full output for noising step current_tokens = ori_input_tokens[:answer_start] + generated_tokens[answer_start:] # --- GREEN HIGHLIGHT --- decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:]) highlighted = [] for j, tok in enumerate(decoded_tokens): tok_id = tokenizer.convert_tokens_to_ids(tok) if tok_id == eot_token_id: continue token_str = tokenizer.convert_tokens_to_string([tok]) if prev_decoded_tokens and j < len(prev_decoded_tokens) and tok != prev_decoded_tokens[j]: highlighted.append(f'{token_str}') else: highlighted.append(token_str) prev_decoded_tokens = decoded_tokens yield f"Iteration {i+1}/{max_it} (after generation):
" + "".join(highlighted).replace('\n', '
') time.sleep(pause_length) # --- Early stopping --- last_tokens.append(current_tokens) if len(last_tokens) > 3: last_tokens.pop(0) if len(last_tokens) == 3 and last_tokens[0] == last_tokens[1] == last_tokens[2]: yield f"Stopped early after {i+1} iterations." break previous_tokens = current_tokens.copy() # --- NOISING STEP --- threshold = get_noising_schedule(i, max_it, sharpness=sharpness) if use_confidence_noising: noised_answer = confidence_guided_noising( current_tokens, answer_start, confidences, noise_clipping, threshold=threshold, eot_weight=eot_weight, mask_weight=mask_weight, noise_start=noise_start ) just_noised_indices = [] else: noised_answer, just_noised_indices = noisify_answer( current_tokens, answer_start, threshold=threshold, eot_weight=eot_weight, mask_weight=mask_weight, clustering=clustering, noise_start = noise_start, ) # Compose full input again: prompt + noised answer current_tokens = ori_input_tokens[:answer_start] + noised_answer[answer_start:] # --- RED HIGHLIGHT --- decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:]) highlighted = [] for j, tok in enumerate(decoded_tokens): tok_id = tokenizer.convert_tokens_to_ids(tok) # if tok_id == eot_token_id: # continue token_str = tokenizer.convert_tokens_to_string([tok]) abs_idx = answer_start + j if abs_idx in just_noised_indices: highlighted.append(f'{token_str}') else: highlighted.append(token_str) yield f"Iteration {i+1}/{max_it} (before noising):
" + "".join(highlighted).replace('\n', '
') time.sleep(pause_length) final_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:]) final_tokens = [tok for tok in final_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id] final_output = tokenizer.convert_tokens_to_string(final_tokens) print(final_output) yield f"Final Output (after {i+1} iterations):
" + final_output.replace('\n', '
') # --- Gradio Interface --- print("Loading model...") model = load_model() print("✅ Model loaded.") demo = gr.Interface( fn=diffusion_chat, inputs=[ gr.Textbox(label="User Question", lines=2, placeholder="What do you know about the city of New York?"), gr.Slider(0, 1, value=0.5, step=0.05, label="↓ = longer answers (EOT weight)"), gr.Slider(0, 1, value=0.5, step=0.05, label="↓ = more random answers (MASK weight)"), gr.Slider(1, 512, value=32, step=1, label="↑ = more iterations"), gr.Slider(0.01, 5, value=0.01, step=0.01, label="↑ = longer pause (for visualization)"), gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="↓ = more noising (sharpness)"), gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="↑ = more clustered noising (fewer, larger edits)"), gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="↑ = more noise (noise start)"), gr.Checkbox(value=False, label="Use confidence-guided noising"), gr.Slider(0.01, 1.0, value=0.01, step=0.01, label="↓ = more confidence guidance (noise clipping)"), ], outputs=[gr.HTML(label="Diffusion Output")], title="Diffusion Language Model Chat", theme="default", description="This interface runs a diffusion-based language model to generate answers progressively." ) demo.launch(share=True, allowed_paths=["."], ssr_mode=False)