Spaces:
Running
on
Zero
Running
on
Zero
adjustable noise clipping
Browse files
app.py
CHANGED
@@ -74,7 +74,7 @@ def noisify_answer(input_ids, answer_start, threshold=1.0, eot_weight=1.0):
|
|
74 |
return noised
|
75 |
|
76 |
# Add new noising function
|
77 |
-
def confidence_guided_noising(input_ids, answer_start, confidences, threshold, eot_weight):
|
78 |
noised = input_ids.copy()
|
79 |
answer_len = len(input_ids) - answer_start
|
80 |
num_to_noise = int(threshold * answer_len)
|
@@ -84,7 +84,7 @@ def confidence_guided_noising(input_ids, answer_start, confidences, threshold, e
|
|
84 |
|
85 |
# Avoid zero-probability weights for selection
|
86 |
raw_weights = 1.0 - np.array(confidences[answer_start:])
|
87 |
-
raw_weights = np.clip(raw_weights,
|
88 |
weights = raw_weights / raw_weights.sum()
|
89 |
|
90 |
if num_to_noise > len(weights):
|
@@ -100,7 +100,7 @@ def confidence_guided_noising(input_ids, answer_start, confidences, threshold, e
|
|
100 |
# Avoid zero-probability for token sampling
|
101 |
mixed_probs = token_probabilities.copy()
|
102 |
mixed_probs[eot_token_id] *= eot_weight
|
103 |
-
mixed_probs = np.clip(mixed_probs, 1e-
|
104 |
mixed_probs /= mixed_probs.sum()
|
105 |
|
106 |
noise = rng.choice(np.arange(vocab_size), size=num_to_noise, p=mixed_probs)
|
@@ -129,7 +129,7 @@ def generate_diffusion_text(input_ids, answer_start):
|
|
129 |
|
130 |
|
131 |
# Modify diffusion_chat to use new noising conditionally
|
132 |
-
def diffusion_chat(question, eot_weight, max_it, sharpness, use_confidence_noising):
|
133 |
placeholder = "What do you know about the city of New York?"
|
134 |
if question.strip() == "":
|
135 |
question = placeholder
|
@@ -184,7 +184,7 @@ def diffusion_chat(question, eot_weight, max_it, sharpness, use_confidence_noisi
|
|
184 |
|
185 |
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
|
186 |
if use_confidence_noising:
|
187 |
-
current_tokens = confidence_guided_noising(generated_tokens, answer_start, confidences, threshold, eot_weight)
|
188 |
else:
|
189 |
current_tokens = noisify_answer(generated_tokens, answer_start, threshold=threshold, eot_weight=eot_weight)
|
190 |
|
@@ -209,6 +209,7 @@ demo = gr.Interface(
|
|
209 |
gr.Slider(0, 1, value=0.4, step=0.05, label="↓ = longer answers (EOT weight)"),
|
210 |
gr.Slider(1, 512, value=64, step=1, label="↑ = more iterations"),
|
211 |
gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="↓ = more noising (sharpness)"),
|
|
|
212 |
gr.Checkbox(value=False, label="Use confidence-guided noising") # ✅ NEW
|
213 |
],
|
214 |
outputs=[gr.HTML(label="Diffusion Output")],
|
|
|
74 |
return noised
|
75 |
|
76 |
# Add new noising function
|
77 |
+
def confidence_guided_noising(input_ids, answer_start, confidences, threshold, eot_weight, noise_clipping):
|
78 |
noised = input_ids.copy()
|
79 |
answer_len = len(input_ids) - answer_start
|
80 |
num_to_noise = int(threshold * answer_len)
|
|
|
84 |
|
85 |
# Avoid zero-probability weights for selection
|
86 |
raw_weights = 1.0 - np.array(confidences[answer_start:])
|
87 |
+
raw_weights = np.clip(raw_weights, noise_clipping, None) # avoid 0s
|
88 |
weights = raw_weights / raw_weights.sum()
|
89 |
|
90 |
if num_to_noise > len(weights):
|
|
|
100 |
# Avoid zero-probability for token sampling
|
101 |
mixed_probs = token_probabilities.copy()
|
102 |
mixed_probs[eot_token_id] *= eot_weight
|
103 |
+
# mixed_probs = np.clip(mixed_probs, 1e-6, None) # fix for EOT weight near 0
|
104 |
mixed_probs /= mixed_probs.sum()
|
105 |
|
106 |
noise = rng.choice(np.arange(vocab_size), size=num_to_noise, p=mixed_probs)
|
|
|
129 |
|
130 |
|
131 |
# Modify diffusion_chat to use new noising conditionally
|
132 |
+
def diffusion_chat(question, eot_weight, max_it, sharpness, noise_clipping, use_confidence_noising):
|
133 |
placeholder = "What do you know about the city of New York?"
|
134 |
if question.strip() == "":
|
135 |
question = placeholder
|
|
|
184 |
|
185 |
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
|
186 |
if use_confidence_noising:
|
187 |
+
current_tokens = confidence_guided_noising(generated_tokens, answer_start, confidences, threshold, eot_weight, noise_clipping)
|
188 |
else:
|
189 |
current_tokens = noisify_answer(generated_tokens, answer_start, threshold=threshold, eot_weight=eot_weight)
|
190 |
|
|
|
209 |
gr.Slider(0, 1, value=0.4, step=0.05, label="↓ = longer answers (EOT weight)"),
|
210 |
gr.Slider(1, 512, value=64, step=1, label="↑ = more iterations"),
|
211 |
gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="↓ = more noising (sharpness)"),
|
212 |
+
gr.Slider(0.01, 1.0, value=0.05, step=0.01, label="↑ = more confidence guidance (noise clipping)"),
|
213 |
gr.Checkbox(value=False, label="Use confidence-guided noising") # ✅ NEW
|
214 |
],
|
215 |
outputs=[gr.HTML(label="Diffusion Output")],
|