Spaces:
Running on Zero

Ruurd commited on
Commit
0af2920
·
1 Parent(s): 7252f98

Updated model architecture

Browse files
Files changed (1) hide show
  1. llama_diffusion_model.py +173 -58
llama_diffusion_model.py CHANGED
@@ -1,73 +1,172 @@
1
- import torch
2
  import torch.nn as nn
3
- import torch.nn.functional as F
 
4
  from torch.amp import autocast
5
- from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig
6
  from peft import LoraConfig, get_peft_model
 
 
7
  import os
8
 
 
 
9
  hf_token = os.getenv("HF_TOKEN")
10
 
11
- class BidirectionalLlamaAttention(nn.Module):
12
- def __init__(self, original_layer, masking='unidirectional'):
13
- super().__init__()
14
- self.original = original_layer
15
  self.masking = masking
16
 
17
- self.q_proj = original_layer.q_proj
18
- self.k_proj = original_layer.k_proj
19
- self.v_proj = original_layer.v_proj
20
- self.o_proj = original_layer.o_proj
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- self.head_dim = self.q_proj.out_features // original_layer.num_heads
23
- self.num_heads = original_layer.num_heads
24
- self.num_key_value_groups = original_layer.num_key_value_groups
25
- self.attention_dropout = original_layer.attention_dropout
26
- self.layer_idx = original_layer.layer_idx
27
- self.scaling = original_layer.scaling
28
 
29
- def forward(self, hidden_states, position_embeddings, attention_mask=None, past_key_value=None, cache_position=None, **kwargs):
30
- bsz, seq_len, _ = hidden_states.size()
31
 
32
- query_states = self._split_heads(self.q_proj(hidden_states))
33
- key_states = self._split_heads(self.k_proj(hidden_states))
34
- value_states = self._split_heads(self.v_proj(hidden_states))
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  cos, sin = position_embeddings
37
- query_states, key_states = self._apply_rotary(query_states, key_states, cos, sin)
38
 
 
 
 
 
 
 
 
39
  if self.masking == 'bidirectional':
40
- attn_mask = torch.ones((bsz, 1, seq_len, seq_len), device=hidden_states.device)
41
- else:
42
- attn_mask = torch.tril(torch.ones(seq_len, seq_len, device=hidden_states.device)).unsqueeze(0).unsqueeze(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
- attn_weights = torch.matmul(query_states, key_states.transpose(-2, -1)) * self.scaling
45
- attn_weights = attn_weights + attn_mask.log()
46
- attn_weights = F.softmax(attn_weights, dim=-1)
47
- attn_weights = F.dropout(attn_weights, p=self.attention_dropout, training=self.training)
48
 
49
- attn_output = torch.matmul(attn_weights, value_states)
50
- attn_output = self._merge_heads(attn_output)
51
- return self.o_proj(attn_output), attn_weights
52
 
53
- def _split_heads(self, x):
54
- return x.view(x.size(0), x.size(1), self.num_heads, self.head_dim).transpose(1, 2)
55
 
56
- def _merge_heads(self, x):
57
- return x.transpose(1, 2).contiguous().view(x.size(0), -1, self.num_heads * self.head_dim)
58
-
59
- def _apply_rotary(self, q, k, cos, sin):
60
- cos = cos.unsqueeze(1)
61
- sin = sin.unsqueeze(1)
62
- q_rot = (q * cos) + (self._rotate_half(q) * sin)
63
- k_rot = (k * cos) + (self._rotate_half(k) * sin)
64
- return q_rot, k_rot
65
-
66
- def _rotate_half(self, x):
67
- x1 = x[..., : x.shape[-1] // 2]
68
- x2 = x[..., x.shape[-1] // 2 :]
69
- return torch.cat((-x2, x1), dim=-1)
70
 
 
 
 
 
 
 
 
71
 
72
  class CustomTransformerConfig(PretrainedConfig):
73
  def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, max_position_embeddings=4096, **kwargs):
@@ -79,7 +178,7 @@ class CustomTransformerConfig(PretrainedConfig):
79
  self.dropout = dropout
80
  self.prediction_chunk = prediction_chunk
81
  self.max_position_embeddings = max_position_embeddings
82
-
83
 
84
  class CustomTransformerModel(PreTrainedModel):
85
  config_class = CustomTransformerConfig
@@ -87,12 +186,15 @@ class CustomTransformerModel(PreTrainedModel):
87
  def __init__(self, config):
88
  super().__init__(config)
89
 
90
- self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, token=hf_token)
 
 
91
  self.llama.resize_token_embeddings(config.vocab_size)
92
 
93
  for i, layer in enumerate(self.llama.model.layers):
94
  layer.self_attn = BidirectionalLlamaAttention(layer.self_attn, masking='bidirectional')
95
 
 
96
  for param in self.llama.parameters():
97
  param.requires_grad = False
98
 
@@ -103,27 +205,40 @@ class CustomTransformerModel(PreTrainedModel):
103
  r=256,
104
  lora_alpha=256,
105
  lora_dropout=0.0,
106
- target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
107
  bias="none",
108
  task_type=None
109
  )
110
 
111
  self.llama = get_peft_model(self.llama, lora_config)
 
112
  self.llama = self.llama.to(torch.float16)
113
 
114
  def forward(self, input_ids, labels=None, **kwargs):
115
  batch_size, seq_length = input_ids.shape
116
- assert seq_length == self.config.prediction_chunk
 
 
 
117
 
118
- with autocast("cuda", dtype=torch.float16):
119
- outputs = self.llama(input_ids=input_ids, output_hidden_states=True, **kwargs)
120
- logits = outputs.logits[:, :, :self.config.vocab_size].view(batch_size, self.config.prediction_chunk, self.config.vocab_size)
 
 
 
 
 
121
 
122
- loss = None
123
  if labels is not None:
124
- loss_fct = nn.CrossEntropyLoss()
 
 
 
 
125
  loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
126
 
 
127
  return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
128
 
129
 
 
 
1
  import torch.nn as nn
2
+ from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig
3
+ from transformers.models.llama.modeling_llama import LlamaAttention
4
  from torch.amp import autocast
 
5
  from peft import LoraConfig, get_peft_model
6
+ from typing import Optional, Tuple
7
+ import torch
8
  import os
9
 
10
+
11
+
12
  hf_token = os.getenv("HF_TOKEN")
13
 
14
+ class BidirectionalLlamaAttention(LlamaAttention):
15
+ def __init__(self, original_layer, masking = 'unidirectional'):
16
+ super().__init__(original_layer.config, layer_idx=original_layer.layer_idx)
 
17
  self.masking = masking
18
 
19
+ # Copy weights from original layer
20
+ self.q_proj.weight = original_layer.q_proj.weight
21
+ self.k_proj.weight = original_layer.k_proj.weight
22
+ self.v_proj.weight = original_layer.v_proj.weight
23
+ self.o_proj.weight = original_layer.o_proj.weight
24
+
25
+ def repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
26
+ """
27
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
28
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
29
+ """
30
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
31
+ if n_rep == 1:
32
+ return hidden_states
33
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
34
+
35
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
36
+
37
+ def eager_attention_forward(self,
38
+ module: nn.Module,
39
+ query: torch.Tensor,
40
+ key: torch.Tensor,
41
+ value: torch.Tensor,
42
+ attention_mask: Optional[torch.Tensor],
43
+ scaling: float,
44
+ dropout: float = 0.0,
45
+ **kwargs,
46
+ ):
47
+ key_states = self.repeat_kv(key, module.num_key_value_groups)
48
+ value_states = self.repeat_kv(value, module.num_key_value_groups)
49
+
50
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
51
+ if attention_mask is not None:
52
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
53
+ attn_weights = attn_weights + causal_mask
54
+
55
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(query.dtype)
56
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
57
+ attn_output = torch.matmul(attn_weights, value_states)
58
+ attn_output = attn_output.transpose(1, 2).contiguous()
59
+
60
+ return attn_output, attn_weights
61
 
62
+ def rotate_half(self, x):
63
+ """Rotates half the hidden dims of the input."""
64
+ x1 = x[..., : x.shape[-1] // 2]
65
+ x2 = x[..., x.shape[-1] // 2 :]
 
 
66
 
67
+ return torch.cat((-x2, x1), dim=-1)
 
68
 
 
 
 
69
 
70
+ def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
71
+ """Applies Rotary Position Embedding to the query and key tensors.
72
+
73
+ Args:
74
+ q (`torch.Tensor`): The query tensor.
75
+ k (`torch.Tensor`): The key tensor.
76
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
77
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
78
+ position_ids (`torch.Tensor`, *optional*):
79
+ Deprecated and unused.
80
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
81
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
82
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
83
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
84
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
85
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
86
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
87
+ Returns:
88
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
89
+ """
90
+ cos = cos.unsqueeze(unsqueeze_dim)
91
+ sin = sin.unsqueeze(unsqueeze_dim)
92
+ q_embed = (q * cos) + (self.rotate_half(q) * sin)
93
+ k_embed = (k * cos) + (self.rotate_half(k) * sin)
94
+
95
+ return q_embed, k_embed
96
+
97
+ def forward(
98
+ self,
99
+ hidden_states: torch.Tensor,
100
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
101
+ attention_mask: Optional[torch.Tensor],
102
+ past_key_value: Optional[torch.Tensor] = None,
103
+ cache_position: Optional[torch.LongTensor] = None,
104
+ **kwargs,
105
+ ):
106
+ input_shape = hidden_states.shape[:-1]
107
+ hidden_shape = (*input_shape, -1, self.head_dim)
108
+
109
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
110
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
111
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
112
+
113
+ # Apply rotary embeddings
114
  cos, sin = position_embeddings
115
+ query_states, key_states = self.apply_rotary_pos_emb(query_states, key_states, cos, sin)
116
 
117
+ if past_key_value is not None:
118
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
119
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
120
+
121
+ # 🔄 **Modify the Attention Mask**
122
+ seq_len = hidden_states.shape[1]
123
+ batch_size = hidden_states.shape[0]
124
  if self.masking == 'bidirectional':
125
+ base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool)
126
+ attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch
127
+ elif self.masking == 'bidirectional_masked':
128
+ base_mask = torch.ones((seq_len, seq_len), device=hidden_states.device, dtype=torch.bool)
129
+ base_mask[:, 1:].fill_diagonal_(False) # ✅ Apply diagonal masking only in 2D
130
+ attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch
131
+ else: # unidirectional
132
+ # 🚀 Standard autoregressive (causal) mask
133
+ attn_mask = torch.tril(torch.ones(seq_len, seq_len, device=hidden_states.device, dtype=torch.bool))
134
+ attn_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() # ✅ Copy for each batch
135
+
136
+
137
+ # Call the default attention function
138
+ attn_output, attn_weights = self.eager_attention_forward(
139
+ self,
140
+ query_states,
141
+ key_states,
142
+ value_states,
143
+ attn_mask, # ✅ Custom mask is applied here
144
+ dropout=0.0 if not self.training else self.attention_dropout,
145
+ scaling=self.scaling,
146
+ **kwargs,
147
+ )
148
 
149
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
150
+ attn_output = self.o_proj(attn_output)
 
 
151
 
152
+ return attn_output, attn_weights
 
 
153
 
 
 
154
 
155
+ def _split_heads(self, tensor, num_heads, attn_head_size):
156
+ """
157
+ Splits hidden_size dim into attn_head_size and num_heads
158
+ """
159
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
160
+ tensor = tensor.view(*new_shape)
161
+ return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
 
 
 
 
 
 
 
162
 
163
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
164
+ """
165
+ Merges attn_head_size dim and num_attn_heads dim into hidden_size
166
+ """
167
+ tensor = tensor.permute(0, 2, 1, 3).contiguous()
168
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
169
+ return tensor.view(new_shape)
170
 
171
  class CustomTransformerConfig(PretrainedConfig):
172
  def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, max_position_embeddings=4096, **kwargs):
 
178
  self.dropout = dropout
179
  self.prediction_chunk = prediction_chunk
180
  self.max_position_embeddings = max_position_embeddings
181
+ self.input_size = prediction_chunk
182
 
183
  class CustomTransformerModel(PreTrainedModel):
184
  config_class = CustomTransformerConfig
 
186
  def __init__(self, config):
187
  super().__init__(config)
188
 
189
+ # Load pre-trained Llama model (excluding its original lm_head)
190
+ self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, device_map="auto", token = hf_token)
191
+
192
  self.llama.resize_token_embeddings(config.vocab_size)
193
 
194
  for i, layer in enumerate(self.llama.model.layers):
195
  layer.self_attn = BidirectionalLlamaAttention(layer.self_attn, masking='bidirectional')
196
 
197
+ # Freeze Llama to retain pre-trained knowledge
198
  for param in self.llama.parameters():
199
  param.requires_grad = False
200
 
 
205
  r=256,
206
  lora_alpha=256,
207
  lora_dropout=0.0,
208
+ target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # Llama-3 uses these attention modules
209
  bias="none",
210
  task_type=None
211
  )
212
 
213
  self.llama = get_peft_model(self.llama, lora_config)
214
+ self.llama.print_trainable_parameters() # Print number of trainable parameters
215
  self.llama = self.llama.to(torch.float16)
216
 
217
  def forward(self, input_ids, labels=None, **kwargs):
218
  batch_size, seq_length = input_ids.shape
219
+ assert seq_length == self.input_size, f"Expected input length input_size, got {seq_length}"
220
+
221
+ with autocast("cuda", dtype=torch.float16): # ✅ Correct future-proof usage
222
+
223
 
224
+ outputs = self.llama(input_ids, output_hidden_states=True, **kwargs)
225
+
226
+ logits = outputs.logits[:,:,:self.config.vocab_size]
227
+
228
+ # Reshape logits to (batch, input_size, vocab_size)
229
+ logits = logits.view(batch_size, self.config.prediction_chunk, self.config.vocab_size)
230
+
231
+ loss = None
232
 
 
233
  if labels is not None:
234
+ assert labels.shape == (batch_size, self.input_size), f"Labels shape mismatch: expected (batch, input_size), got {labels.shape}"
235
+
236
+ # Compute loss
237
+ loss_fct = torch.nn.CrossEntropyLoss()
238
+
239
  loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
240
 
241
+
242
  return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
243
 
244