Spaces:
Running on Zero

Ruurd commited on
Commit
034cffe
·
verified ·
1 Parent(s): 1394a1e

Add noise start

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -57,10 +57,10 @@ def get_noising_schedule(i, max_it, sharpness=5.0):
57
  x = i / max_it
58
  return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
59
 
60
- def noisify_answer(input_ids, answer_start, threshold=1.0, eot_weight=1.0, clustering=0.5):
61
  noised = input_ids.copy()
62
  answer_len = len(noised) - answer_start
63
- num_to_noise = int(threshold * answer_len)
64
 
65
  if num_to_noise == 0:
66
  return noised, []
@@ -144,7 +144,7 @@ def generate_diffusion_text(input_ids):
144
  return sampled, conf
145
 
146
  # --- Inference Wrapper ---
147
- def diffusion_chat(question, eot_weight, max_it, pause_length, sharpness, clustering, use_confidence_noising, noise_clipping):
148
  placeholder = "What do you know about the city of New York?"
149
  if question.strip() == "":
150
  question = placeholder
@@ -214,7 +214,7 @@ def diffusion_chat(question, eot_weight, max_it, pause_length, sharpness, cluste
214
  just_noised_indices = []
215
  else:
216
  noised_answer, just_noised_indices = noisify_answer(
217
- current_tokens, answer_start, threshold=threshold, eot_weight=eot_weight, clustering=clustering
218
  )
219
 
220
  # Compose full input again: prompt + noised answer
@@ -258,6 +258,7 @@ demo = gr.Interface(
258
  gr.Slider(0.01, 5, value=0.01, step=0.01, label="↑ = longer pause (for visualization)"),
259
  gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="↓ = more noising (sharpness)"),
260
  gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="↑ = more clustered noising (fewer, larger edits)"),
 
261
  gr.Checkbox(value=False, label="Use confidence-guided noising"),
262
  gr.Slider(0.01, 1.0, value=0.05, step=0.01, label="↓ = more confidence guidance (noise clipping)"),
263
 
 
57
  x = i / max_it
58
  return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
59
 
60
+ def noisify_answer(input_ids, answer_start, threshold=1.0, eot_weight=1.0, clustering=0.5, noise_start = 0.5):
61
  noised = input_ids.copy()
62
  answer_len = len(noised) - answer_start
63
+ num_to_noise = int(threshold * answer_len * noise_start)
64
 
65
  if num_to_noise == 0:
66
  return noised, []
 
144
  return sampled, conf
145
 
146
  # --- Inference Wrapper ---
147
+ def diffusion_chat(question, eot_weight, max_it, pause_length, sharpness, clustering, noise_start, use_confidence_noising, noise_clipping):
148
  placeholder = "What do you know about the city of New York?"
149
  if question.strip() == "":
150
  question = placeholder
 
214
  just_noised_indices = []
215
  else:
216
  noised_answer, just_noised_indices = noisify_answer(
217
+ current_tokens, answer_start, threshold=threshold, eot_weight=eot_weight, clustering=clustering, noise_start = noise_start,
218
  )
219
 
220
  # Compose full input again: prompt + noised answer
 
258
  gr.Slider(0.01, 5, value=0.01, step=0.01, label="↑ = longer pause (for visualization)"),
259
  gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="↓ = more noising (sharpness)"),
260
  gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="↑ = more clustered noising (fewer, larger edits)"),
261
+ gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="↑ = more noise (noise start)"),
262
  gr.Checkbox(value=False, label="Use confidence-guided noising"),
263
  gr.Slider(0.01, 1.0, value=0.05, step=0.01, label="↓ = more confidence guidance (noise clipping)"),
264