radiolm / app.py
Ruurd's picture
Debug
7187df9
import os
import torch
import time
import torch
import time
import gradio as gr
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, LlamaTokenizer, TextIteratorStreamer
import threading
import queue
# Globals
current_model = None
current_tokenizer = None
# Curated models
model_choices = [
"meta-llama/Llama-3.2-3B-Instruct",
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"google/gemma-7b-it",
"mistralai/Mistral-Nemo-Instruct-FP8-2407"
]
# Example patient database
patient_db = {
"001 - John Doe": {
"name": "John Doe",
"age": "45",
"id": "001",
"notes": "History of chest pain and hypertension. No prior surgeries."
},
"002 - Maria Sanchez": {
"name": "Maria Sanchez",
"age": "62",
"id": "002",
"notes": "Suspected pulmonary embolism. Shortness of breath, tachycardia."
},
"003 - Ahmed Al-Farsi": {
"name": "Ahmed Al-Farsi",
"age": "29",
"id": "003",
"notes": "Persistent migraines. MRI scheduled for brain imaging."
},
"004 - Lin Wei": {
"name": "Lin Wei",
"age": "51",
"id": "004",
"notes": "Annual screening. Family history of breast cancer."
}
}
# Store conversations per patient
patient_conversations = {}
class RichTextStreamer(TextIteratorStreamer):
def __init__(self, tokenizer, prompt_len=0, **kwargs):
super().__init__(tokenizer, **kwargs)
self.token_queue = queue.Queue()
self.prompt_len = prompt_len
self.count = 0
def put(self, value):
if isinstance(value, torch.Tensor):
token_ids = value.view(-1).tolist()
elif isinstance(value, list):
token_ids = value
else:
token_ids = [value]
for token_id in token_ids:
self.count += 1
if self.count <= self.prompt_len:
continue # skip prompt tokens
token_str = self.tokenizer.decode([token_id], **self.decode_kwargs)
is_special = token_id in self.tokenizer.all_special_ids
self.token_queue.put({
"token_id": token_id,
"token": token_str,
"is_special": is_special
})
def __iter__(self):
while True:
try:
token_info = self.token_queue.get(timeout=self.timeout)
yield token_info
except queue.Empty:
if self.end_of_generation.is_set():
break
@spaces.GPU
def chat_with_model(messages, pid):
global current_model, current_tokenizer
if current_model is None or current_tokenizer is None:
yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
return
current_id = pid
if not current_id:
yield messages
return
max_new_tokens = 1024
output_text = ""
in_think = False
generated_tokens = 0
pad_id = current_tokenizer.pad_token_id or current_tokenizer.unk_token_id or 0
eos_id = current_tokenizer.eos_token_id
# Build system context
system_messages = [
{
"role": "system",
"content": (
"You are a radiologist's companion, here to answer questions about the patient and assist in the diagnosis if asked to do so. "
"You are able to call specialized tools. "
"At the moment, you have one tool available: an organ segmentation algorithm for abdominal CTs.\n\n"
"If the user requests an organ segmentation, output a JSON object in this structure:\n"
"{\n"
" \"function\": \"segment_organ\",\n"
" \"arguments\": {\n"
" \"scan_path\": \"<path_to_ct_scan>\",\n"
" \"organ\": \"<organ_name>\"\n"
" }\n"
"}\n\n"
"Once you call the function, the app will execute it and return the result."
)
},
{
"role": "system",
"content": f"Patient Information:\nName: {patient_name.value}\nAge: {patient_age.value}\nID: {patient_id.value}\nNotes: {patient_notes.value}"
}
]
# FULL conversation
full_messages = system_messages + messages
# --- Generate from full context
prompt = format_prompt(full_messages)
device = torch.device("cuda")
current_model.to(device).half()
inputs = current_tokenizer(prompt, return_tensors="pt").to(device)
prompt_len = inputs["input_ids"].shape[-1]
print(prompt)
streamer = RichTextStreamer(
tokenizer=current_tokenizer,
prompt_len=prompt_len,
skip_special_tokens=False
)
generation_kwargs = dict(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
streamer=streamer,
eos_token_id=eos_id,
pad_token_id=pad_id
)
thread = threading.Thread(target=current_model.generate, kwargs=generation_kwargs)
thread.start()
# Now extend previous messages
updated_messages = messages.copy()
updated_messages.append({"role": "assistant", "content": ""})
print(updated_messages)
for token_info in streamer:
token_str = token_info["token"]
token_id = token_info["token_id"]
if token_id == eos_id:
break
if "<think>" in token_str:
in_think = True
token_str = token_str.replace("<think>", "")
output_text += "*"
if "</think>" in token_str:
in_think = False
token_str = token_str.replace("</think>", "")
output_text += token_str + "*"
else:
output_text += token_str
if "\nUser" in output_text:
output_text = output_text.split("\nUser")[0].rstrip()
updated_messages[-1]["content"] = output_text
break
generated_tokens += 1
if generated_tokens >= max_new_tokens:
break
updated_messages[-1]["content"] = output_text
patient_conversations[current_id] = updated_messages
yield updated_messages
if in_think:
output_text += "*"
updated_messages[-1]["content"] = output_text
patient_conversations[current_id] = updated_messages # <- SAVE the full conversation including model outputs
torch.cuda.empty_cache()
return updated_messages
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
global current_model, current_tokenizer
token = os.getenv("HF_TOKEN")
progress(0, desc="Loading config...")
config = AutoConfig.from_pretrained(model_name, use_auth_token=token)
progress(0.2, desc="Loading tokenizer...")
# Default
current_tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code= True, use_auth_token=token)
progress(0.5, desc="Loading model...")
current_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="cpu", # loaded to CPU initially
use_auth_token=token
)
progress(1, desc="Model ready.")
return f"{model_name} loaded and ready!"
# Format conversation as plain text
def format_prompt(messages):
prompt = ""
for msg in messages:
role = msg["role"]
if role == "user":
prompt += f"User: {msg['content'].strip()}\n"
elif role == "assistant":
prompt += f"Assistant: {msg['content'].strip()}\n"
elif role == "system":
prompt += f"System: {msg['content'].strip()}\n"
prompt += "Assistant:"
return prompt
def add_user_message(user_input, history, pid):
if not pid: # <-- use the arg, not .value
return "", []
conv = patient_conversations.get(pid, [])
conv.append({"role": "user", "content": user_input})
patient_conversations[pid] = conv
return "", [msg for msg in ([{
"role": "assistant",
"content": (
"**Welcome to the Radiologist's Companion!**\n\n"
"You can ask me about the patient's medical history or available imaging data.\n"
"- I can summarize key details from the EHR.\n"
"- I can tell you which medical images are available.\n"
"- If you'd like an organ segmentation (e.g. spleen, liver, kidney_left, colon, femur_right) on an abdominal CT scan, just ask!\n\n"
"**Example Requests:**\n"
"- \"What do we know about this patient?\"\n"
"- \"Which images are available for this patient?\"\n"
"- \"Can you segment the spleen from the CT scan?\"\n"
)
}] + conv)]
def autofill_patient(patient_key):
if patient_key in patient_db:
info = patient_db[patient_key]
# Init empty conversation if not existing
if info["id"] not in patient_conversations:
patient_conversations[info["id"]] = []
return info["name"], info["age"], info["id"], info["notes"]
return "", "", "", ""
# --- Functions (OUTSIDE) ---
def resolve_model_choice(mode, dropdown_value, textbox_value):
return textbox_value.strip() if mode == "Enter custom model" else dropdown_value
def load_patient_conversation(patient_key):
if patient_key in patient_db:
patient_id_val = patient_db[patient_key]["id"]
history = patient_conversations.get(patient_id_val, [])
welcome_message = {
"role": "assistant",
"content": (
"**Welcome to the Radiologist's Companion!**\n\n"
"You can ask me about the patient's medical history or available imaging data.\n"
"- I can summarize key details from the EHR.\n"
"- I can tell you which medical images are available.\n"
"- If you'd like an organ segmentation (e.g. spleen, liver, kidney_left, colon, femur_right) on an abdominal CT scan, just ask!\n\n"
"**Example Requests:**\n"
"- \"What do we know about this patient?\"\n"
"- \"Which images are available for this patient?\"\n"
"- \"Can you segment the spleen from the CT scan?\"\n"
)
}
return [welcome_message] + history
return []
def get_patient_conversation():
current_id = patient_id.value
if not current_id:
return []
return patient_conversations.get(current_id, [])
# --- Gradio App ---
with gr.Blocks(css=".gradio-container {height: 100vh; overflow: hidden;}") as demo:
gr.Markdown("<h2 style='text-align: center;'>Radiologist's Companion</h2>")
default_model = gr.State(model_choices[0])
with gr.Row(equal_height=True):
# Patient Information
with gr.Column(scale=1):
gr.Markdown("### Patient Information")
patient_selector = gr.Dropdown(
choices=list(patient_db.keys()),
value=list(patient_db.keys())[0],
label="Select Patient",
allow_custom_value=False
)
patient_name = gr.Textbox(label="Name", placeholder="e.g., John Doe")
patient_age = gr.Textbox(label="Age", placeholder="e.g., 45")
patient_id = gr.Textbox(label="Patient ID", placeholder="e.g., 123456")
patient_notes = gr.Textbox(label="Clinical Notes", lines=10)
# Chat
with gr.Column(scale=2):
gr.Markdown("### Chat")
chatbot = gr.Chatbot(label="Chat", type="messages", height=500)
msg = gr.Textbox(label="Your message", placeholder="Enter your chat message...", show_label=False)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
# Model Settings
with gr.Column(scale=1):
gr.Markdown("### Model Settings")
mode = gr.Radio(["Choose from list", "Enter custom model"], value="Choose from list", label="Model Input Mode")
model_selector = gr.Dropdown(choices=model_choices, label="Select Predefined Model")
model_textbox = gr.Textbox(label="Or Enter HF Model Name")
model_status = gr.Textbox(label="Model Status", interactive=False)
# --- Event Bindings ---
# Load patient info + conversation + model on startup
demo.load(
lambda: autofill_patient(list(patient_db.keys())[0]),
inputs=None,
outputs=[patient_name, patient_age, patient_id, patient_notes]
).then(
lambda: load_patient_conversation(list(patient_db.keys())[0]),
inputs=None,
outputs=chatbot
).then(
load_model_on_selection,
inputs=default_model,
outputs=model_status
)
# Patient selection changes
patient_selector.change(
autofill_patient,
inputs=[patient_selector],
outputs=[patient_name, patient_age, patient_id, patient_notes]
).then(
load_patient_conversation,
inputs=[patient_selector],
outputs=[chatbot]
)
# Model selection logic
mode.select(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then(
load_model_on_selection, inputs=default_model, outputs=model_status
)
model_selector.change(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then(
load_model_on_selection, inputs=default_model, outputs=model_status
)
model_textbox.submit(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then(
load_model_on_selection, inputs=default_model, outputs=model_status
)
msg.submit(
add_user_message,
[msg, chatbot, patient_id],
[msg, chatbot],
queue=False,
).then(
chat_with_model,
[chatbot, patient_id],
chatbot,
)
# Clear chat
clear_btn.click(lambda: [], None, chatbot, queue=False)
demo.launch()