|
import os |
|
import torch |
|
import time |
|
import torch |
|
import time |
|
import gradio as gr |
|
import spaces |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer |
|
import threading |
|
import queue |
|
|
|
class RichTextStreamer(TextIteratorStreamer): |
|
def __init__(self, tokenizer, prompt_len=0, **kwargs): |
|
super().__init__(tokenizer, **kwargs) |
|
self.token_queue = queue.Queue() |
|
self.prompt_len = prompt_len |
|
self.count = 0 |
|
|
|
def put(self, value): |
|
if isinstance(value, torch.Tensor): |
|
token_ids = value.view(-1).tolist() |
|
elif isinstance(value, list): |
|
token_ids = value |
|
else: |
|
token_ids = [value] |
|
|
|
for token_id in token_ids: |
|
self.count += 1 |
|
if self.count <= self.prompt_len: |
|
continue |
|
token_str = self.tokenizer.decode([token_id], **self.decode_kwargs) |
|
is_special = token_id in self.tokenizer.all_special_ids |
|
self.token_queue.put({ |
|
"token_id": token_id, |
|
"token": token_str, |
|
"is_special": is_special |
|
}) |
|
|
|
def __iter__(self): |
|
while True: |
|
try: |
|
token_info = self.token_queue.get(timeout=self.timeout) |
|
yield token_info |
|
except queue.Empty: |
|
if self.end_of_generation.is_set(): |
|
break |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer |
|
import threading |
|
|
|
from transformers import TextIteratorStreamer |
|
import threading |
|
|
|
from transformers import TextIteratorStreamer |
|
import queue |
|
|
|
class RichTextStreamer(TextIteratorStreamer): |
|
def __init__(self, tokenizer, prompt_len=0, **kwargs): |
|
super().__init__(tokenizer, **kwargs) |
|
self.token_queue = queue.Queue() |
|
self.prompt_len = prompt_len |
|
self.count = 0 |
|
|
|
def put(self, value): |
|
if isinstance(value, torch.Tensor): |
|
token_ids = value.view(-1).tolist() |
|
elif isinstance(value, list): |
|
token_ids = value |
|
else: |
|
token_ids = [value] |
|
|
|
for token_id in token_ids: |
|
self.count += 1 |
|
if self.count <= self.prompt_len: |
|
continue |
|
token_str = self.tokenizer.decode([token_id], **self.decode_kwargs) |
|
is_special = token_id in self.tokenizer.all_special_ids |
|
self.token_queue.put({ |
|
"token_id": token_id, |
|
"token": token_str, |
|
"is_special": is_special |
|
}) |
|
|
|
def __iter__(self): |
|
while True: |
|
try: |
|
token_info = self.token_queue.get(timeout=self.timeout) |
|
yield token_info |
|
except queue.Empty: |
|
if self.end_of_generation.is_set(): |
|
break |
|
|
|
|
|
@spaces.GPU |
|
def chat_with_model(messages): |
|
global current_model, current_tokenizer |
|
if current_model is None or current_tokenizer is None: |
|
yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}] |
|
return |
|
|
|
pad_id = current_tokenizer.pad_token_id |
|
eos_id = current_tokenizer.eos_token_id |
|
if pad_id is None: |
|
pad_id = current_tokenizer.unk_token_id or 0 |
|
|
|
output_text = "" |
|
in_think = False |
|
max_new_tokens = 1024 |
|
generated_tokens = 0 |
|
|
|
prompt = format_prompt(messages) |
|
device = torch.device("cuda") |
|
current_model.to(device).half() |
|
|
|
|
|
inputs = current_tokenizer(prompt, return_tensors="pt").to(device) |
|
prompt_len = inputs["input_ids"].shape[-1] |
|
|
|
|
|
streamer = RichTextStreamer( |
|
tokenizer=current_tokenizer, |
|
prompt_len=prompt_len, |
|
skip_special_tokens=False |
|
) |
|
|
|
|
|
generation_kwargs = dict( |
|
**inputs, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
streamer=streamer, |
|
eos_token_id=eos_id, |
|
pad_token_id=pad_id |
|
) |
|
|
|
|
|
thread = threading.Thread(target=current_model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
messages = messages.copy() |
|
messages.append({"role": "assistant", "content": ""}) |
|
|
|
print(f'Step 1: {messages}') |
|
|
|
prompt_text = current_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=False) |
|
|
|
for token_info in streamer: |
|
token_str = token_info["token"] |
|
token_id = token_info["token_id"] |
|
is_special = token_info["is_special"] |
|
|
|
|
|
if token_id == eos_id: |
|
break |
|
|
|
|
|
if "<think>" in token_str: |
|
in_think = True |
|
token_str = token_str.replace("<think>", "") |
|
output_text += "*" |
|
|
|
if "</think>" in token_str: |
|
in_think = False |
|
token_str = token_str.replace("</think>", "") |
|
output_text += token_str + "*" |
|
else: |
|
output_text += token_str |
|
|
|
|
|
if "\nUser" in output_text: |
|
output_text = output_text.split("\nUser")[0].rstrip() |
|
messages[-1]["content"] = output_text |
|
break |
|
|
|
generated_tokens += 1 |
|
if generated_tokens >= max_new_tokens: |
|
break |
|
|
|
messages[-1]["content"] = output_text |
|
|
|
print(f'Step 2: {messages}') |
|
|
|
yield messages |
|
|
|
if in_think: |
|
output_text += "*" |
|
messages[-1]["content"] = output_text |
|
|
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
messages[-1]["content"] = output_text |
|
print(f'Step 3: {messages}') |
|
|
|
return messages |
|
|
|
|
|
|
|
|
|
current_model = None |
|
current_tokenizer = None |
|
|
|
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)): |
|
global current_model, current_tokenizer |
|
token = os.getenv("HF_TOKEN") |
|
|
|
progress(0, desc="Loading tokenizer...") |
|
current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token) |
|
|
|
progress(0.5, desc="Loading model...") |
|
current_model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float16, |
|
device_map="cpu", |
|
use_auth_token=token |
|
) |
|
|
|
progress(1, desc="Model ready.") |
|
return f"{model_name} loaded and ready!" |
|
|
|
|
|
def format_prompt(messages): |
|
prompt = "" |
|
for msg in messages: |
|
role = msg["role"] |
|
if role == "user": |
|
prompt += f"User: {msg['content'].strip()}\n" |
|
elif role == "assistant": |
|
prompt += f"Assistant: {msg['content'].strip()}\n" |
|
prompt += "Assistant:" |
|
return prompt |
|
|
|
def add_user_message(user_input, history): |
|
return "", history + [{"role": "user", "content": user_input}] |
|
|
|
|
|
model_choices = [ |
|
"meta-llama/Llama-3.2-3B-Instruct", |
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B", |
|
"google/gemma-7b", |
|
"mistralai/Mistral-Small-3.1-24B-Instruct-2503" |
|
] |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Clinical Chatbot (Streaming)") |
|
|
|
default_model = gr.State(model_choices[0]) |
|
|
|
with gr.Row(): |
|
mode = gr.Radio(["Choose from list", "Enter custom model"], value="Choose from list", label="Model Input Mode") |
|
model_selector = gr.Dropdown(choices=model_choices, label="Select Predefined Model") |
|
model_textbox = gr.Textbox(label="Or Enter HF Model Name") |
|
|
|
model_status = gr.Textbox(label="Model Status", interactive=False) |
|
chatbot = gr.Chatbot(label="Chat", type="messages") |
|
msg = gr.Textbox(label="Your message", placeholder="Enter clinical input...", show_label=False) |
|
with gr.Row(): |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
clear_btn = gr.Button("Clear", variant="secondary") |
|
|
|
def resolve_model_choice(mode, dropdown_value, textbox_value): |
|
return textbox_value.strip() if mode == "Enter custom model" else dropdown_value |
|
|
|
|
|
demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status) |
|
|
|
|
|
mode.select(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then( |
|
load_model_on_selection, inputs=default_model, outputs=model_status |
|
) |
|
model_selector.change(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then( |
|
load_model_on_selection, inputs=default_model, outputs=model_status |
|
) |
|
model_textbox.submit(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then( |
|
load_model_on_selection, inputs=default_model, outputs=model_status |
|
) |
|
|
|
|
|
msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then( |
|
chat_with_model, chatbot, chatbot |
|
) |
|
submit_btn.click(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then( |
|
chat_with_model, chatbot, chatbot |
|
) |
|
|
|
clear_btn.click(lambda: [], None, chatbot, queue=False) |
|
|
|
|
|
|
|
demo.launch() |
|
|