from transformers import ( PaliGemmaProcessor, PaliGemmaForConditionalGeneration, ) from transformers.image_utils import load_image import torch model_id = "google/paligemma2-3b-pt-448" url = "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg" image = load_image(url) model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto").eval() processor = PaliGemmaProcessor.from_pretrained(model_id) # Leaving the prompt blank for pre-trained models prompt = "" model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch.bfloat16).to(model.device) input_len = model_inputs["input_ids"].shape[-1] with torch.inference_mode(): generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False) generation = generation[0][input_len:] decoded = processor.decode(generation, skip_special_tokens=True) print(decoded)