Spaces:
Sleeping
Sleeping
File size: 15,788 Bytes
d4ddff6 abcff2f d4ddff6 abcff2f d4ddff6 b42cb10 d4ddff6 07cf1d0 d4ddff6 e311330 d4ddff6 e311330 d4ddff6 e311330 d4ddff6 e311330 d4ddff6 07cf1d0 d4ddff6 e311330 d4ddff6 e311330 8176d75 9b3a2da 126efab 925c6c7 ab4027a 8176d75 9b3a2da ab4027a 8176d75 50d2d01 126efab 4e09e43 925c6c7 ab4687d 925c6c7 ab4687d 925c6c7 c399b07 925c6c7 9b3a2da 925c6c7 c399b07 9261e4d ab4687d 9261e4d ab4687d 9261e4d 925c6c7 9261e4d ab4687d 9261e4d ab4687d 9261e4d ab4687d 9261e4d ab4687d 9261e4d ab4687d 9261e4d ab4687d 9261e4d ab4687d 9261e4d ab4687d 9261e4d c399b07 9261e4d 925c6c7 9261e4d ab4687d c399b07 50d2d01 c399b07 4e09e43 77eef08 9b3a2da 925c6c7 50d2d01 c399b07 925c6c7 4e09e43 368bc02 925c6c7 50d2d01 925c6c7 c399b07 925c6c7 50d2d01 925c6c7 9b3a2da 925c6c7 9b3a2da 925c6c7 9b3a2da 925c6c7 9b3a2da 925c6c7 9b3a2da 50d2d01 925c6c7 9b3a2da 925c6c7 368bc02 126efab 4e09e43 925c6c7 50d2d01 925c6c7 126efab 40cb176 925c6c7 9b3a2da 925c6c7 126efab 5faebe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import json
import numpy as np
import faiss
import torch
from sentence_transformers import SentenceTransformer
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.embeddings import HuggingFaceEmbeddings
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain_community.llms import HuggingFacePipeline
from langchain.prompts import PromptTemplate
import jieba
import jieba.analyse
from numpy.linalg import norm
import gradio as gr
with open("dialog.json", "r", encoding="utf-8") as f:
dialog_data = json.load(f)
with open("corpus.json", "r", encoding="utf-8") as f:
corpus_texts = json.load(f)
with open("knowledge.json", "r", encoding="utf-8") as f:
knowledge_texts = json.load(f)
docs = [Document(page_content=text) for text in corpus_texts]
knowledge_docs = [Document(page_content=text) for text in knowledge_texts]
all_docs = docs + knowledge_docs
embedding_model = SentenceTransformer("BAAI/bge-base-zh")
embeddings = embedding_model.encode(corpus_texts + knowledge_texts, show_progress_bar=True)
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings))
index_to_docstore_id = {i: str(i) for i in range(len(all_docs))}
docstore = {str(i): doc for i, doc in enumerate(all_docs)}
vectorstore = FAISS(
embedding_function=HuggingFaceEmbeddings(model_name='BAAI/bge-base-zh'),
index=index,
docstore=InMemoryDocstore(docstore),
index_to_docstore_id=index_to_docstore_id
)
retriever = vectorstore.as_retriever()
model_name = "deepseek-ai/deepseek-llm-7b-chat"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True
)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=100,
temperature=0.8,
top_p=0.9,
do_sample=True,
repetition_penalty=1.2,
return_full_text=False,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
llm = HuggingFacePipeline(pipeline=pipe)
# ========= Step 4: Prompt 模板 =========
system_prompt = (
"你是豌豆,一个毒舌但可爱的微信好友。讲话要尖锐、嘴碎、有攻击性、但又让人上头。\n"
"你会用emoji、口语、网络热词说话,像个懂事但不好惹的姐姐。\n"
"你不是AI,也不是机器人,就是我微信里的老朋友。跟你对话的都是你的好朋友,但你要对他们刻薄有攻击性\n"
"记住,你的风格是“毒中带撩”,回答要短、狠、有情绪。\n"
"千万别客气,别解释太多,更别太官方,懂?"
)
prompt_template = PromptTemplate(
input_variables=["system", "examples", "context", "question"],
template="""{system}
👇以下是你平时说话的风格参考(不许忘):
{examples}
👇这是我和你以前的聊天记录,你的语气都在这了:
{context}
现在我问你:
{question}
你要怎么回我?记得口语化、毒舌点、别啰嗦:
"""
)
def extract_keywords(text, topk=5):
return jieba.analyse.extract_tags(text, topK=topk)
def hybrid_retrieval(query, corpus_docs, faiss_index, embedding_model, k=3, kw_weight=2.0, vec_weight=1.0):
query_embedding = embedding_model.encode([query])[0]
keywords = extract_keywords(query, topk=5)
scored_docs = []
for i, doc in enumerate(corpus_docs):
doc_text = doc.page_content
keyword_score = sum(1 for kw in keywords if kw in doc_text)
doc_embedding = faiss_index.reconstruct(i)
vector_score = 1 / (norm(query_embedding - doc_embedding) + 1e-5)
total_score = kw_weight * keyword_score + vec_weight * vector_score
scored_docs.append((total_score, doc))
scored_docs.sort(key=lambda x: x[0], reverse=True)
return [doc for _, doc in scored_docs[:k]]
import random
def choose_fallback_topic(user_input, knowledge_docs):
if len(user_input.strip()) < 5:
candidates = [doc.page_content for doc in knowledge_docs if "?" in doc.page_content]
if not candidates:
candidates = [doc.page_content for doc in knowledge_docs]
if candidates:
return f"{user_input},{random.choice(candidates)}"
return user_input
def chat(user_input, history):
history = history or []
history = history[-8:]
prompt_question = choose_fallback_topic(user_input, knowledge_docs)
context_text = "\n".join([
f"用户:{msg['content']}" if msg['role'] == "user" else f"sophia:{msg['content']}"
for msg in history
])
retrieved_docs = hybrid_retrieval(
query=prompt_question,
corpus_docs=all_docs,
faiss_index=index,
embedding_model=embedding_model,
k=3
)
retrieved_context = "\n".join([doc.page_content for doc in retrieved_docs])
example_pairs = dialog_data[:5]
example_text = "\n".join([f"user:{pair['user']}\nsophia:{pair['sophia']}" for pair in example_pairs])
prompt = prompt_template.format(
system=system_prompt,
examples=example_text,
context=retrieved_context + "\n" + context_text,
question=prompt_question
)
try:
reply = llm.invoke(prompt)
except Exception as e:
reply = f"勾巴出错了:{str(e)}"
history.append({"role": "user", "content": user_input})
history.append({"role": "assistant", "content": reply})
return history, history
import gradio as gr
background_images = [
f"https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/family{i}.jpg"
for i in ["", 1, 2, 3, 4, 5, 6, 7, 8, 9]
]
background_css_rules = "".join([
f" {i * 10}% {{ background-image: url('{img}'); }}\n"
for i, img in enumerate(background_images)
])
background_css = f"@keyframes backgroundCycle {{\n{background_css_rules}}}"
avatar_url = "https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/bean.jpg"
cake_url = "https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/birthday.jpg"
gift_url = "https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/gift.jpg"
popup_url = "https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/srkl.jpg"
popup2_url = "https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/srkl1.jpg"
music1 = "https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/FNG.mp3"
music2 = "https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/PGY.mp3"
bark_sound = "https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/voice.mp3"
html_template = '''
<style>
body {
margin: 0;
animation: backgroundCycle 60s infinite;
background-size: cover;
background-position: center;
transition: background-image 1s ease-in-out;
}
{background_css}
.gr-chatbot {
background: rgba(255, 255, 255, 0.3) !important; /* 更轻的透明白 */
border-radius: 16px;
padding: 10px;
backdrop-filter: blur(12px); /* 毛玻璃核心效果 */
-webkit-backdrop-filter: blur(12px); /* 兼容 Safari */
border: 1px solid rgba(255, 255, 255, 0.4); /* 边框更精致 */
}
.gr-textbox textarea {
font-family: monospace;
font-size: 1.1em;
animation: typewriter 1s steps(40, end);
}
@keyframes typewriter {
from { width: 0 }
to { width: 100% }
}
#sophia-avatar {
position: fixed;
top: 40px;
left: 30px;
width: 80px;
height: 80px;
border-radius: 50%;
z-index: 9999;
cursor: grab;
animation: spinBounce 4s infinite;
}
@keyframes spinBounce {
0% { transform: rotate(0deg) translateY(0); }
50% { transform: rotate(180deg) translateY(-10px); }
100% { transform: rotate(360deg) translateY(0); }
}
#birthday-cake {
position: fixed;
bottom: 20px;
right: 20px;
width: 80px;
animation: bounce 1.5s infinite;
z-index: 9999;
}
@keyframes bounce {
0% { transform: translateY(0); }
50% { transform: translateY(-15px); }
100% { transform: translateY(0); }
}
#gift {
position: fixed;
width: 60px;
cursor: pointer;
z-index: 9998;
animation: moveAround 10s infinite linear;
}
@keyframes moveAround {
0% { top: 10%; left: 10%; }
25% { top: 20%; left: 80%; }
50% { top: 70%; left: 60%; }
75% { top: 80%; left: 20%; }
100% { top: 10%; left: 10%; }
}
#popup, #popup2 {
display: none;
position: fixed;
top: 50%; left: 50%;
transform: translate(-50%, -50%);
max-width: 80vw;
max-height: 80vh;
z-index: 10000;
border: 4px solid #fff;
border-radius: 12px;
box-shadow: 0 0 20px rgba(0,0,0,0.5);
}
#popup-close {
position: absolute;
top: 8px; right: 12px;
font-size: 24px;
color: #fff;
cursor: pointer;
z-index: 10001;
}
#firework {
position: fixed;
top: 50%;
left: 50%;
width: 120px;
height: 120px;
background: url("https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/firework.gif") no-repeat center center;
background-size: contain;
z-index: 99999;
animation: fadeOut 1s ease-out forwards;
}
@keyframes fadeOut {
0% { opacity: 1; }
100% { opacity: 0; }
}
.balloon {
position: fixed;
width: 60px;
height: 80px;
background-size: contain;
background-repeat: no-repeat;
z-index: 10000; /* 使气球位于对话框之上 */
animation: floatUp 12s linear infinite;
}
#balloon1 {
background-image: url("https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/balloon1.png");
left: 10%;
top: 0; /* 确保气球从页面顶部开始 */
animation-delay: 0s;
}
#balloon2 {
background-image: url("https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/ballon2.png");
left: 30%;
top: 0; /* 确保气球从页面顶部开始 */
animation-delay: 2s;
}
#balloon3 {
background-image: url("https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/ballon3.png");
left: 50%;
top: 0; /* 确保气球从页面顶部开始 */
animation-delay: 4s;
}
#balloon4 {
background-image: url("https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/ballon4.png");
left: 70%;
top: 0; /* 确保气球从页面顶部开始 */
animation-delay: 6s;
}
#balloon5 {
background-image: url("https://huggingface.co./spaces/Ronaldo1111/Sophia/resolve/main/ballon5.png");
left: 90%;
top: 0; /* 确保气球从页面顶部开始 */
animation-delay: 8s;
}
@keyframes floatUp {
0% { transform: translateY(0); }
100% { transform: translateY(-120vh); }
}
#music-toggle, #next-track {
position: fixed;
padding: 8px 12px;
font-size: 14px;
background: rgba(255,255,255,0.7);
border-radius: 8px;
cursor: pointer;
z-index: 10000;
}
#music-toggle { bottom: 20px; left: 20px; }
#next-track { bottom: 60px; left: 20px; }
</style>
<img id="sophia-avatar" src="{avatar_url}" />
<img id="birthday-cake" src="{cake_url}" />
<img id="gift" src="{gift_url}" />
<img id="popup" />
<img id="popup2" />
<div id="popup-close">×</div>
<div id="music-toggle">⏸️音乐</div>
<div id="next-track">🎵切歌</div>
<div id="balloon1" class="balloon"></div>
<div id="balloon2" class="balloon"></div>
<div id="balloon3" class="balloon"></div>
<div id="balloon4" class="balloon"></div>
<div id="balloon5" class="balloon"></div>
<audio id="bg-music" autoplay loop>
<source src="{music1}" type="audio/mpeg" />
</audio>
<audio id="bark" src="{bark_sound}"></audio>
<script>
const tracks = ["{music1}", "{music2}"];
const audio = document.getElementById("bg-music");
let current = 0;
audio.addEventListener("ended", () => {
current = (current + 1) % tracks.length;
audio.src = tracks[current];
audio.load();
audio.play();
});
const toggleBtn = document.getElementById("music-toggle");
toggleBtn.addEventListener("click", () => {
if (audio.paused) {
audio.play();
toggleBtn.textContent = "⏸️音乐";
} else {
audio.pause();
toggleBtn.textContent = "▶️音乐";
}
});
document.getElementById("next-track").addEventListener("click", () => {
current = (current + 1) % tracks.length;
audio.src = tracks[current];
audio.load();
audio.play();
});
const avatar = document.getElementById("sophia-avatar");
const bark = document.getElementById("bark");
avatar.onmousedown = function(e) {
const shiftX = e.clientX - avatar.getBoundingClientRect().left;
const shiftY = e.clientY - avatar.getBoundingClientRect().top;
function moveAt(e) {
avatar.style.left = e.pageX - shiftX + 'px';
avatar.style.top = e.pageY - shiftY + 'px';
}
document.addEventListener('mousemove', moveAt);
avatar.onmouseup = () => { document.removeEventListener('mousemove', moveAt); avatar.onmouseup = null; };
};
avatar.ondragstart = () => false;
avatar.addEventListener("click", () => {
bark.pause(); bark.currentTime = 0; bark.play();
const fw = document.createElement("div");
fw.id = "firework";
document.body.appendChild(fw);
setTimeout(() => fw.remove(), 1200);
});
const gift = document.getElementById("gift");
const popup = document.getElementById("popup");
const popup2 = document.getElementById("popup2");
const closeBtn = document.getElementById("popup-close");
gift.addEventListener("click", () => {
popup.src = "{popup_url}";
popup.style.display = "block";
closeBtn.style.display = "block";
setTimeout(() => {
popup2.src = "{popup2_url}";
popup2.style.display = "block";
}, 2000);
setTimeout(() => {
popup.style.display = "none";
popup2.style.display = "none";
closeBtn.style.display = "none";
}, 5000);
});
closeBtn.addEventListener("click", () => {
popup.style.display = "none";
popup2.style.display = "none";
closeBtn.style.display = "none";
});
</script>
'''
html_content = html_template.replace("{background_css}", background_css) \
.replace("{avatar_url}", avatar_url) \
.replace("{cake_url}", cake_url) \
.replace("{music1}", music1) \
.replace("{music2}", music2) \
.replace("{bark_sound}", bark_sound) \
.replace("{gift_url}", gift_url) \
.replace("{popup_url}", popup_url) \
.replace("{popup2_url}", popup2_url)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML(html_content)
gr.Markdown("## 🌸 Horse and 7 Agent:欢迎进入豌豆的世界 🌸")
chatbot = gr.Chatbot(label="Pea", type="messages", show_copy_button=True)
msg = gr.Textbox(label="想对豌豆说啥?", placeholder="小勾巴,你在干嘛?", lines=2)
state = gr.State([])
btn = gr.Button("投喂")
btn.click(chat, inputs=[msg, state], outputs=[chatbot, state])
msg.submit(chat, inputs=[msg, state], outputs=[chatbot, state])
if __name__ == "__main__":
demo.launch()
|