File size: 4,904 Bytes
c8c90c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
from torchvision import transforms
import PIL.Image as Image

DEVICE = 'cuda'
mse = nn.MSELoss()


def calc_histogram_loss(A, B, histogram_block):
    input_hist = histogram_block(A)
    target_hist = histogram_block(B)
    histogram_loss = (1/np.sqrt(2.0) * (torch.sqrt(torch.sum(
        torch.pow(torch.sqrt(target_hist) - torch.sqrt(input_hist), 2)))) / 
        input_hist.shape[0])

    return histogram_loss
    
# B, C, H, W; mean var on HW
def calc_mean_std(feat, eps=1e-5):
    # eps is a small value added to the variance to avoid divide-by-zero.
    size = feat.size()
    assert (len(size) == 4)
    N, C = size[:2]
    feat_var = feat.view(N, C, -1).var(dim=2) + eps
    feat_std = feat_var.sqrt().view(N, C, 1, 1)
    feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
    return feat_mean, feat_std

def mean_variance_norm(feat):
    size = feat.size()
    mean, std = calc_mean_std(feat)
    normalized_feat = (feat - mean.expand(size)) / std.expand(size)
    return normalized_feat

def train_transform():
    transform_list = [
        transforms.Resize(size=512),
        transforms.RandomCrop(256),
        transforms.ToTensor()
    ]
    return transforms.Compose(transform_list)

def test_transform():
    transform_list = []
    transform_list.append(transforms.Resize(size=(512)))
    transform_list.append(transforms.ToTensor())
    transform = transforms.Compose(transform_list)
    return transform

# https://discuss.pytorch.org/t/check-gradient-flow-in-network/15063/7
def plot_grad_flow(named_parameters):
    '''Plots the gradients flowing through different layers in the net during training.
    Can be used for checking for possible gradient vanishing / exploding problems.
    
    Usage: Plug this function in Trainer class after loss.backwards() as 
    "plot_grad_flow(self.model.named_parameters())" to visualize the gradient flow'''
    ave_grads = []
    max_grads= []
    layers = []
    for n, p in named_parameters:
        if(p.requires_grad) and ("bias" not in n):
            layers.append(n)
            ave_grads.append(p.grad.abs().mean())
            max_grads.append(p.grad.abs().max())
            print('-'*82)
            print(n, p.grad.abs().mean(), p.grad.abs().max())
            print('-'*82)

def InfiniteSampler(n):
    # i = 0
    i = n - 1
    order = np.random.permutation(n)
    while True:
        yield order[i]
        i += 1
        if i >= n:
            np.random.seed()
            order = np.random.permutation(n)
            i = 0

class InfiniteSamplerWrapper(data.sampler.Sampler):
    def __init__(self, data_source):
        self.num_samples = len(data_source)

    def __iter__(self):
        return iter(InfiniteSampler(self.num_samples))

    def __len__(self):
        return 2 ** 31

class FlatFolderDataset(data.Dataset):
    def __init__(self, root, transform):
        super(FlatFolderDataset, self).__init__()
        self.root = root
        self.paths = os.listdir(self.root)
        self.transform = transform

    def __getitem__(self, index):
        path = self.paths[index]
        img = Image.open(os.path.join(self.root, path)).convert('RGB')
        img = self.transform(img)
        return img

    def __len__(self):
        return len(self.paths)

    def name(self):
        return 'FlatFolderDataset'

def adjust_learning_rate(optimizer, iteration_count, args):
    """Imitating the original implementation"""
    lr = args.lr / (1.0 + 5e-5 * iteration_count)
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

def cosine_dismat(A, B):
    A = A.view(A.shape[0], A.shape[1], -1)
    B = B.view(B.shape[0], B.shape[1], -1)

    A_norm = torch.sqrt((A**2).sum(1))
    B_norm = torch.sqrt((B**2).sum(1))

    A = (A/A_norm.unsqueeze(dim=1).expand(A.shape)).permute(0,2,1)
    B = (B/B_norm.unsqueeze(dim=1).expand(B.shape))
    dismat = 1.-torch.bmm(A, B) 

    return dismat

def calc_remd_loss(A, B):
    C = cosine_dismat(A, B)
    m1, _ = C.min(1)
    m2, _ = C.min(2)
    
    remd = torch.max(m1.mean(), m2.mean())

    return remd

def calc_ss_loss(A, B):
    MA = cosine_dismat(A, A)
    MB = cosine_dismat(B, B)
    Lself_similarity = torch.abs(MA-MB).mean() 

    return Lself_similarity

def calc_moment_loss(A, B):
    A = A.view(A.shape[0], A.shape[1], -1)
    B = B.view(B.shape[0], B.shape[1], -1)

    mu_a = torch.mean(A, 1, keepdim=True)
    mu_b = torch.mean(B, 1, keepdim=True)
    mu_d = torch.abs(mu_a - mu_b).mean()

    A_c = A - mu_a
    B_c = B - mu_b
    cov_a = torch.bmm(A_c, A_c.permute(0,2,1)) / (A.shape[2]-1)
    cov_b = torch.bmm(B_c, B_c.permute(0,2,1)) / (B.shape[2]-1)
    cov_d = torch.abs(cov_a - cov_b).mean()
    loss = mu_d + cov_d
    return loss

def calc_mse_loss(A, B):
    return mse(A, B)