Spaces:
Sleeping
Sleeping
Rivalcoder
commited on
Commit
·
2981dff
1
Parent(s):
dd2fa11
Add files
Browse files- app.py +72 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tempfile
|
2 |
+
from transformers import pipeline
|
3 |
+
import gradio as gr
|
4 |
+
from fastapi import FastAPI, UploadFile, File, Request
|
5 |
+
import os
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
# Initialize classifier
|
9 |
+
classifier = pipeline("audio-classification", model="superb/hubert-large-superb-er")
|
10 |
+
|
11 |
+
# Create FastAPI app (works with Gradio)
|
12 |
+
app = FastAPI()
|
13 |
+
|
14 |
+
def save_upload_file(upload_file: UploadFile) -> str:
|
15 |
+
"""Save uploaded file to temporary location"""
|
16 |
+
try:
|
17 |
+
suffix = os.path.splitext(upload_file.filename)[1]
|
18 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
|
19 |
+
tmp.write(upload_file.file.read())
|
20 |
+
return tmp.name
|
21 |
+
finally:
|
22 |
+
upload_file.file.close()
|
23 |
+
|
24 |
+
@app.post("/api/predict")
|
25 |
+
async def predict_from_upload(file: UploadFile = File(...)):
|
26 |
+
"""API endpoint for FormData uploads"""
|
27 |
+
try:
|
28 |
+
# Save the uploaded file temporarily
|
29 |
+
temp_path = save_upload_file(file)
|
30 |
+
|
31 |
+
# Process the audio
|
32 |
+
predictions = classifier(temp_path)
|
33 |
+
|
34 |
+
# Clean up
|
35 |
+
os.unlink(temp_path)
|
36 |
+
|
37 |
+
return {"predictions": predictions}
|
38 |
+
except Exception as e:
|
39 |
+
return {"error": str(e)}, 500
|
40 |
+
|
41 |
+
# Gradio interface for testing
|
42 |
+
def gradio_predict(audio_file):
|
43 |
+
"""Gradio interface that handles both file objects and paths"""
|
44 |
+
if isinstance(audio_file, str): # Path from Gradio upload
|
45 |
+
audio_path = audio_file
|
46 |
+
else: # Direct file object
|
47 |
+
temp_path = save_upload_file(audio_file)
|
48 |
+
audio_path = temp_path
|
49 |
+
|
50 |
+
predictions = classifier(audio_path)
|
51 |
+
|
52 |
+
if hasattr(audio_file, 'file'): # Clean up if we created temp file
|
53 |
+
os.unlink(audio_path)
|
54 |
+
|
55 |
+
return {p["label"]: p["score"] for p in predictions}
|
56 |
+
|
57 |
+
# Create Gradio interface
|
58 |
+
demo = gr.Interface(
|
59 |
+
fn=gradio_predict,
|
60 |
+
inputs=gr.Audio(type="filepath", label="Upload Audio"),
|
61 |
+
outputs=gr.Label(num_top_classes=5),
|
62 |
+
title="Audio Emotion Recognition",
|
63 |
+
description="Upload an audio file to analyze emotional content"
|
64 |
+
)
|
65 |
+
|
66 |
+
# Mount Gradio app
|
67 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
68 |
+
|
69 |
+
# For running locally
|
70 |
+
if __name__ == "__main__":
|
71 |
+
import uvicorn
|
72 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
librosa
|
5 |
+
gradio
|
6 |
+
python-multipart
|
7 |
+
uvicorn
|