import torch import gradio as gr from fastapi import FastAPI, File, UploadFile from fastapi.responses import JSONResponse from transformers import ConvNextForImageClassification, AutoImageProcessor from PIL import Image import io # Class names (for skin diseases) class_names = [ 'Acne and Rosacea Photos', 'Actinic Keratosis Basal Cell Carcinoma and other Malignant Lesions', 'Atopic Dermatitis Photos', 'Bullous Disease Photos', 'Cellulitis Impetigo and other Bacterial Infections', 'Eczema Photos', 'Exanthems and Drug Eruptions', 'Hair Loss Photos Alopecia and other Hair Diseases', 'Herpes HPV and other STDs Photos', 'Light Diseases and Disorders of Pigmentation', 'Lupus and other Connective Tissue diseases', 'Melanoma Skin Cancer Nevi and Moles', 'Nail Fungus and other Nail Disease', 'Poison Ivy Photos and other Contact Dermatitis', 'Psoriasis pictures Lichen Planus and related diseases', 'Scabies Lyme Disease and other Infestations and Bites', 'Seborrheic Keratoses and other Benign Tumors', 'Systemic Disease', 'Tinea Ringworm Candidiasis and other Fungal Infections', 'Urticaria Hives', 'Vascular Tumors', 'Vasculitis Photos', 'Warts Molluscum and other Viral Infections' ] # Load model and processor model = ConvNextForImageClassification.from_pretrained("facebook/convnext-base-224") model.classifier = torch.nn.Linear(in_features=1024, out_features=23) model.load_state_dict(torch.load("./models/convnext_base_finetuned.pth", map_location="cpu")) model.eval() processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224") # FastAPI app app = FastAPI() # Helper function for processing the image def predict(image: Image.Image): # Preprocess the image inputs = processor(images=image, return_tensors="pt") # Perform inference with torch.no_grad(): outputs = model(**inputs) predicted_class = torch.argmax(outputs.logits, dim=1).item() return predicted_class, class_names[predicted_class] # FastAPI endpoint to handle image upload and prediction @app.post("/predict/") async def predict_endpoint(file: UploadFile = File(...)): try: # Read and process the image img_bytes = await file.read() img = Image.open(io.BytesIO(img_bytes)) # Get the prediction predicted_class, predicted_name = predict(img) # Return the result as JSON return JSONResponse(content={"predicted_class": predicted_class, "predicted_name": predicted_name}) except Exception as e: return JSONResponse(content={"error": str(e)}, status_code=500) # Gradio function to integrate with the FastAPI prediction def gradio_predict(image: Image.Image): predicted_class, predicted_name = predict(image) return f"Predicted Class: {predicted_name}" # Gradio Interface iface = gr.Interface(fn=gradio_predict, inputs=gr.Image(type="pil"), outputs=gr.Textbox()) # Serve Gradio interface on FastAPI @app.get("/gradio/") async def gradio_interface(): return iface.launch(share=True, inline=True) # Run the FastAPI app using Uvicorn if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)