|
import gradio as gr
|
|
from transformers import pipeline
|
|
import numpy as np
|
|
import pandas as pd
|
|
import re
|
|
from pydub import AudioSegment
|
|
from pydub.generators import Sine
|
|
import io
|
|
from scipy.signal import resample
|
|
|
|
MODEL_NAME = "openai/whisper-tiny"
|
|
BATCH_SIZE = 8
|
|
|
|
|
|
pipe = pipeline(
|
|
task="automatic-speech-recognition",
|
|
model=MODEL_NAME,
|
|
chunk_length_s=30,
|
|
|
|
)
|
|
|
|
arabic_bad_Words = pd.read_csv("arabic_bad_words_dataset.csv")
|
|
english_bad_Words = pd.read_csv("english_bad_words_dataset.csv")
|
|
|
|
|
|
def clean_english_word(word):
|
|
|
|
cleaned_text = re.sub(r'^[\s\W_]+|[\s\W_]+$', '', word)
|
|
return cleaned_text
|
|
|
|
def clean_arabic_word(word):
|
|
|
|
pattern = r'[^\u0600-\u06FF]'
|
|
|
|
cleaned_word = re.sub(pattern, '', word)
|
|
return cleaned_word
|
|
|
|
def classifier(word_list_with_timestamp, language):
|
|
|
|
foul_words = []
|
|
negative_timestamps = []
|
|
|
|
if language == "English":
|
|
list_to_search = set(english_bad_Words["words"])
|
|
for item in word_list_with_timestamp:
|
|
word = clean_english_word(item['text'])
|
|
if word in list_to_search:
|
|
foul_words.append(word)
|
|
negative_timestamps.append(item['timestamp'])
|
|
else:
|
|
list_to_search = list(arabic_bad_Words["words"])
|
|
for item in word_list_with_timestamp:
|
|
word = clean_arabic_word(item['text'])
|
|
for word_in_list in list_to_search:
|
|
if word_in_list == word:
|
|
foul_words.append(word)
|
|
negative_timestamps.append(item['timestamp'])
|
|
break
|
|
|
|
return [foul_words, negative_timestamps]
|
|
|
|
def generate_bleep(duration_ms, frequency=1000):
|
|
sine_wave = Sine(frequency)
|
|
bleep = sine_wave.to_audio_segment(duration=duration_ms)
|
|
return bleep
|
|
|
|
def mute_audio_range(audio_filepath, ranges, bleep_frequency=800):
|
|
audio = AudioSegment.from_file(audio_filepath)
|
|
|
|
for range in ranges:
|
|
start_time = range[0] - 0.1
|
|
end_time = range[-1] + 0.1
|
|
start_ms = start_time * 1000
|
|
end_ms = end_time * 1000
|
|
duration_ms = end_ms - start_ms
|
|
|
|
|
|
bleep_sound = generate_bleep(duration_ms, bleep_frequency)
|
|
|
|
|
|
audio = audio[:start_ms] + bleep_sound + audio[end_ms:]
|
|
|
|
return audio
|
|
|
|
def format_output_to_list(data):
|
|
formatted_list = "\n".join([f"{item['timestamp'][0]}s - {item['timestamp'][1]}s \t : {item['text']}" for item in data])
|
|
return formatted_list
|
|
|
|
def transcribe(input_audio, audio_language, task, timestamp_type):
|
|
if input_audio is None:
|
|
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
|
|
|
if timestamp_type == "sentence":
|
|
timestamp_type = True
|
|
else:
|
|
timestamp_type = "word"
|
|
|
|
output = pipe(input_audio, batch_size=BATCH_SIZE, return_timestamps=timestamp_type, generate_kwargs={"task": task})
|
|
text = output['text']
|
|
|
|
timestamps = format_output_to_list(output['chunks'])
|
|
|
|
foul_words, negative_timestamps = classifier(output['chunks'], audio_language)
|
|
foul_words = ", ".join(foul_words)
|
|
|
|
|
|
audio_output = mute_audio_range(input_audio, negative_timestamps)
|
|
|
|
output_buffer = io.BytesIO()
|
|
audio_output.export(output_buffer, format="wav")
|
|
output_buffer.seek(0)
|
|
|
|
|
|
sample_rate = audio_output.frame_rate
|
|
audio_data = np.frombuffer(output_buffer.read(), dtype=np.int16)
|
|
|
|
|
|
return [text, timestamps, foul_words, (sample_rate, audio_data)]
|
|
|
|
examples = [
|
|
["arabic_english_audios/audios/arabic_audio_1.wav", 'Arabic', 'transcribe', 'word'],
|
|
["arabic_english_audios/audios/arabic_audio_2.wav", 'Arabic', 'transcribe', 'word'],
|
|
["arabic_english_audios/audios/arabic_audio_3.wav", 'Arabic', 'transcribe', 'word'],
|
|
["arabic_english_audios/audios/arabic_audio_4.wav", 'Arabic', 'transcribe', 'word'],
|
|
["arabic_english_audios/audios/arabic_hate_audio_1.mp3", 'Arabic', 'transcribe', 'word'],
|
|
["arabic_english_audios/audios/arabic_hate_audio_2.mp3", 'Arabic', 'transcribe', 'word'],
|
|
["arabic_english_audios/audios/arabic_hate_audio_3.mp3", 'Arabic', 'transcribe', 'word'],
|
|
["arabic_english_audios/audios/english_audio_1.wav", 'English', 'transcribe', 'word'],
|
|
["arabic_english_audios/audios/english_audio_2.mp3", 'English', 'transcribe', 'word'],
|
|
["arabic_english_audios/audios/english_audio_3.mp3", 'English', 'transcribe', 'word'],
|
|
["arabic_english_audios/audios/english_audio_4.mp3", 'English', 'transcribe', 'word'],
|
|
["arabic_english_audios/audios/english_audio_5.mp3", 'English', 'transcribe', 'word'],
|
|
["arabic_english_audios/audios/english_audio_6.wav", 'English', 'transcribe', 'word']
|
|
]
|
|
|
|
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
gr.HTML("<h2 style='text-align: center;'>Transcribing Audio with Timestamps using whisper-large-v3</h2>")
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
audio_input = gr.Audio(sources=["upload", 'microphone'], type="filepath", label="Audio file")
|
|
audio_language = gr.Radio(["Arabic", "English"], label="Audio Language")
|
|
task = gr.Radio(["transcribe", "translate"], label="Task")
|
|
timestamp_type = gr.Radio(["sentence", "word"], label="Timestamp Type")
|
|
with gr.Row():
|
|
clear_button = gr.ClearButton(value="Clear")
|
|
submit_button = gr.Button("Submit", variant="primary", )
|
|
|
|
with gr.Column():
|
|
transcript_output = gr.Text(label="Transcript")
|
|
timestamp_output = gr.Text(label="Timestamps")
|
|
foul_words = gr.Text(label="Foul Words")
|
|
output_audio = gr.Audio(label="Output Audio", type="numpy")
|
|
|
|
examples = gr.Examples(examples, inputs=[audio_input, audio_language, task, timestamp_type], outputs=[transcript_output, timestamp_output, foul_words, output_audio], fn=transcribe, examples_per_page=20)
|
|
|
|
submit_button.click(fn=transcribe, inputs=[audio_input, audio_language, task, timestamp_type], outputs=[transcript_output, timestamp_output, foul_words, output_audio])
|
|
clear_button.add([audio_input, audio_language, task, timestamp_type, transcript_output, timestamp_output, foul_words, output_audio])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch()
|
|
|