|
import torch |
|
from torch import nn |
|
|
|
from src.model.blip import create_vit, init_tokenizer, load_checkpoint |
|
from src.model.med import BertConfig, BertModel |
|
|
|
|
|
class BLIPEmbs(nn.Module): |
|
def __init__( |
|
self, |
|
med_config="configs/med_config.json", |
|
image_size=384, |
|
vit="base", |
|
vit_grad_ckpt=False, |
|
vit_ckpt_layer=0, |
|
embed_dim=256, |
|
queue_size=57600, |
|
negative_all_rank=False, |
|
): |
|
""" |
|
Args: |
|
med_config (str): path for the mixture of encoder-decoder model's configuration file |
|
image_size (int): input image size |
|
vit (str): model size of vision transformer |
|
""" |
|
super().__init__() |
|
|
|
self.visual_encoder, vision_width = create_vit( |
|
vit, image_size, vit_grad_ckpt, vit_ckpt_layer |
|
) |
|
self.tokenizer = init_tokenizer() |
|
med_config = BertConfig.from_json_file(med_config) |
|
med_config.encoder_width = vision_width |
|
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) |
|
|
|
text_width = self.text_encoder.config.hidden_size |
|
|
|
self.vision_proj = nn.Linear(vision_width, embed_dim) |
|
self.text_proj = nn.Linear(text_width, embed_dim) |
|
|
|
self.queue_size = queue_size |
|
self.temp = nn.Parameter(0.07 * torch.ones([])) |
|
|
|
self.negative_all_rank = negative_all_rank |
|
|
|
|
|
def blip_embs(pretrained="", **kwargs): |
|
model = BLIPEmbs(**kwargs) |
|
if pretrained: |
|
model, msg = load_checkpoint(model, pretrained) |
|
print("missing keys:") |
|
print(msg.missing_keys) |
|
assert len(msg.missing_keys) == 0, "Missing keys!" |
|
return model |
|
|