|
import json |
|
from pathlib import Path |
|
|
|
import torch |
|
from lightning import LightningDataModule |
|
from PIL import Image |
|
from torch.utils.data import DataLoader, Dataset |
|
|
|
from src.data.transforms import transform_test, transform_train |
|
from src.data.utils import pre_caption |
|
|
|
Image.MAX_IMAGE_PIXELS = None |
|
|
|
|
|
class FashionIQDataModule(LightningDataModule): |
|
def __init__( |
|
self, |
|
batch_size: int, |
|
num_workers: int = 4, |
|
pin_memory: bool = True, |
|
annotation: dict = {"train": "", "val": ""}, |
|
targets: dict = {"train": "", "val": ""}, |
|
img_dirs: dict = {"train": "", "val": ""}, |
|
emb_dirs: dict = {"train": "", "val": ""}, |
|
image_size: int = 384, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
self.save_hyperparameters(logger=False) |
|
|
|
self.batch_size = batch_size |
|
self.num_workers = num_workers |
|
self.pin_memory = pin_memory |
|
|
|
self.transform_train = transform_train(image_size) |
|
self.transform_test = transform_test(image_size) |
|
|
|
self.data_train = FashionIQDataset( |
|
transform=self.transform_train, |
|
annotation=annotation["train"], |
|
targets=targets["train"], |
|
img_dir=img_dirs["train"], |
|
emb_dir=emb_dirs["train"], |
|
split="train", |
|
) |
|
self.data_val = FashionIQDataset( |
|
transform=self.transform_test, |
|
annotation=annotation["val"], |
|
targets=targets["val"], |
|
img_dir=img_dirs["val"], |
|
emb_dir=emb_dirs["val"], |
|
split="val", |
|
) |
|
|
|
def train_dataloader(self): |
|
return DataLoader( |
|
dataset=self.data_train, |
|
batch_size=self.batch_size, |
|
num_workers=self.num_workers, |
|
pin_memory=self.pin_memory, |
|
shuffle=True, |
|
drop_last=True, |
|
) |
|
|
|
def val_dataloader(self): |
|
return DataLoader( |
|
dataset=self.data_val, |
|
batch_size=self.batch_size, |
|
num_workers=self.num_workers, |
|
pin_memory=self.pin_memory, |
|
shuffle=False, |
|
drop_last=False, |
|
) |
|
|
|
|
|
class FashionIQTestDataModule(LightningDataModule): |
|
def __init__( |
|
self, |
|
batch_size: int, |
|
annotation: str, |
|
targets: str, |
|
img_dirs: str, |
|
emb_dirs: str, |
|
num_workers: int = 4, |
|
pin_memory: bool = True, |
|
image_size: int = 384, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
self.save_hyperparameters(logger=False) |
|
|
|
self.batch_size = batch_size |
|
self.num_workers = num_workers |
|
self.pin_memory = pin_memory |
|
|
|
self.transform_test = transform_test(image_size) |
|
|
|
self.data_test = FashionIQDataset( |
|
transform=self.transform_test, |
|
annotation=annotation, |
|
targets=targets, |
|
img_dir=img_dirs, |
|
emb_dir=emb_dirs, |
|
split="test", |
|
) |
|
|
|
def test_dataloader(self): |
|
return DataLoader( |
|
dataset=self.data_test, |
|
batch_size=self.batch_size, |
|
num_workers=self.num_workers, |
|
pin_memory=self.pin_memory, |
|
shuffle=False, |
|
drop_last=False, |
|
) |
|
|
|
|
|
class FashionIQDataset(Dataset): |
|
def __init__( |
|
self, |
|
transform, |
|
annotation: str, |
|
targets: str, |
|
img_dir: str, |
|
emb_dir: str, |
|
split: str, |
|
max_words: int = 30, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.transform = transform |
|
self.annotation_pth = annotation |
|
assert Path(annotation).exists(), f"Annotation file {annotation} does not exist" |
|
self.annotation = json.load(open(annotation, "r")) |
|
assert Path(targets).exists(), f"Targets file {targets} does not exist" |
|
self.targets = json.load(open(targets, "r")) |
|
self.target_ids = list(set(self.targets)) |
|
self.target_ids.sort() |
|
|
|
self.split = split |
|
self.max_words = max_words |
|
self.img_dir = Path(img_dir) |
|
self.emb_dir = Path(emb_dir) |
|
assert split in [ |
|
"train", |
|
"val", |
|
"test", |
|
], f"Invalid split: {split}, must be one of train, val, or test" |
|
assert self.img_dir.exists(), f"Image directory {img_dir} does not exist" |
|
assert self.emb_dir.exists(), f"Embedding directory {emb_dir} does not exist" |
|
|
|
self.id2int = {id: i for i, id in enumerate(self.target_ids)} |
|
self.int2id = {i: id for i, id in enumerate(self.target_ids)} |
|
|
|
self.pairid2ref = { |
|
id: self.id2int[ann["candidate"]] for id, ann in enumerate(self.annotation) |
|
} |
|
self.pairid2tar = { |
|
id: self.id2int[ann["target"]] for id, ann in enumerate(self.annotation) |
|
} |
|
|
|
img_pths = self.img_dir.glob("*.png") |
|
emb_pths = self.emb_dir.glob("*.pth") |
|
self.id2imgpth = {img_pth.stem: img_pth for img_pth in img_pths} |
|
self.id2embpth = {emb_pth.stem: emb_pth for emb_pth in emb_pths} |
|
|
|
for ann in self.annotation: |
|
assert ( |
|
ann["candidate"] in self.id2imgpth |
|
), f"Path to candidate {ann['candidate']} not found in {self.img_dir}" |
|
assert ( |
|
ann["candidate"] in self.id2embpth |
|
), f"Path to candidate {ann['candidate']} not found in {self.emb_dir}" |
|
assert ( |
|
ann["target"] in self.id2imgpth |
|
), f"Path to target {ann['target']} not found" |
|
assert ( |
|
ann["target"] in self.id2embpth |
|
), f"Path to target {ann['target']} not found" |
|
|
|
def __len__(self) -> int: |
|
return len(self.annotation) |
|
|
|
def __getitem__(self, index): |
|
ann = self.annotation[index] |
|
|
|
reference_img_pth = self.id2imgpth[ann["candidate"]] |
|
reference_img = Image.open(reference_img_pth).convert("RGB") |
|
reference_img = self.transform(reference_img) |
|
|
|
cap1, cap2 = ann["captions"] |
|
caption = f"{cap1} and {cap2}" |
|
caption = pre_caption(caption, self.max_words) |
|
|
|
target_emb_pth = self.id2embpth[ann["target"]] |
|
target_feat = torch.load(target_emb_pth).cpu() |
|
|
|
return (reference_img, target_feat, caption, index) |
|
|