|
""" |
|
* Copyright (c) 2022, salesforce.com, inc. |
|
* All rights reserved. |
|
* SPDX-License-Identifier: BSD-3-Clause |
|
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
* By Junnan Li |
|
""" |
|
import warnings |
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
import os |
|
from urllib.parse import urlparse |
|
|
|
import torch |
|
from hydra.utils import get_original_cwd |
|
from timm.models.hub import download_cached_file |
|
from torch import nn |
|
from transformers import BertTokenizer |
|
|
|
from src.model.med import BertConfig, BertLMHeadModel, BertModel |
|
from src.model.vit import VisionTransformer, interpolate_pos_embed |
|
|
|
|
|
class BLIP_Base(nn.Module): |
|
def __init__( |
|
self, |
|
med_config="configs/med_config.json", |
|
image_size=224, |
|
vit="base", |
|
vit_grad_ckpt=False, |
|
vit_ckpt_layer=0, |
|
): |
|
""" |
|
Args: |
|
med_config (str): path for the mixture of encoder-decoder model's configuration file |
|
image_size (int): input image size |
|
vit (str): model size of vision transformer |
|
""" |
|
super().__init__() |
|
|
|
self.visual_encoder, vision_width = create_vit( |
|
vit, image_size, vit_grad_ckpt, vit_ckpt_layer |
|
) |
|
self.tokenizer = init_tokenizer() |
|
med_config = BertConfig.from_json_file(med_config) |
|
med_config.encoder_width = vision_width |
|
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) |
|
|
|
def forward(self, image, caption, mode): |
|
assert mode in [ |
|
"image", |
|
"text", |
|
"multimodal", |
|
], "mode parameter must be image, text, or multimodal" |
|
text = self.tokenizer(caption, return_tensors="pt").to(image.device) |
|
|
|
if mode == "image": |
|
|
|
image_embeds = self.visual_encoder(image) |
|
return image_embeds |
|
|
|
elif mode == "text": |
|
|
|
text_output = self.text_encoder( |
|
text.input_ids, |
|
attention_mask=text.attention_mask, |
|
return_dict=True, |
|
mode="text", |
|
) |
|
return text_output.last_hidden_state |
|
|
|
elif mode == "multimodal": |
|
|
|
image_embeds = self.visual_encoder(image) |
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( |
|
image.device |
|
) |
|
|
|
text.input_ids[:, 0] = self.tokenizer.enc_token_id |
|
output = self.text_encoder( |
|
text.input_ids, |
|
attention_mask=text.attention_mask, |
|
encoder_hidden_states=image_embeds, |
|
encoder_attention_mask=image_atts, |
|
return_dict=True, |
|
) |
|
return output.last_hidden_state |
|
|
|
|
|
class BLIP_Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
med_config="configs/med_config.json", |
|
image_size=384, |
|
vit="base", |
|
vit_grad_ckpt=False, |
|
vit_ckpt_layer=0, |
|
prompt="a picture of ", |
|
): |
|
""" |
|
Args: |
|
med_config (str): path for the mixture of encoder-decoder model's configuration file |
|
image_size (int): input image size |
|
vit (str): model size of vision transformer |
|
""" |
|
super().__init__() |
|
|
|
self.visual_encoder, vision_width = create_vit( |
|
vit, image_size, vit_grad_ckpt, vit_ckpt_layer |
|
) |
|
self.tokenizer = init_tokenizer() |
|
med_config = BertConfig.from_json_file(med_config) |
|
med_config.encoder_width = vision_width |
|
self.text_decoder = BertLMHeadModel(config=med_config) |
|
|
|
self.prompt = prompt |
|
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1 |
|
|
|
def forward(self, image, caption): |
|
image_embeds = self.visual_encoder(image) |
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( |
|
image.device |
|
) |
|
|
|
text = self.tokenizer( |
|
caption, |
|
padding="longest", |
|
truncation=True, |
|
max_length=40, |
|
return_tensors="pt", |
|
).to(image.device) |
|
|
|
text.input_ids[:, 0] = self.tokenizer.bos_token_id |
|
|
|
decoder_targets = text.input_ids.masked_fill( |
|
text.input_ids == self.tokenizer.pad_token_id, -100 |
|
) |
|
decoder_targets[:, : self.prompt_length] = -100 |
|
|
|
decoder_output = self.text_decoder( |
|
text.input_ids, |
|
attention_mask=text.attention_mask, |
|
encoder_hidden_states=image_embeds, |
|
encoder_attention_mask=image_atts, |
|
labels=decoder_targets, |
|
return_dict=True, |
|
) |
|
loss_lm = decoder_output.loss |
|
|
|
return loss_lm |
|
|
|
def generate( |
|
self, |
|
image, |
|
sample=False, |
|
num_beams=3, |
|
max_length=30, |
|
min_length=10, |
|
top_p=0.9, |
|
repetition_penalty=1.0, |
|
): |
|
image_embeds = self.visual_encoder(image) |
|
|
|
if not sample: |
|
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0) |
|
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( |
|
image.device |
|
) |
|
model_kwargs = { |
|
"encoder_hidden_states": image_embeds, |
|
"encoder_attention_mask": image_atts, |
|
} |
|
|
|
prompt = [self.prompt] * image.size(0) |
|
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to( |
|
image.device |
|
) |
|
input_ids[:, 0] = self.tokenizer.bos_token_id |
|
input_ids = input_ids[:, :-1] |
|
|
|
if sample: |
|
|
|
outputs = self.text_decoder.generate( |
|
input_ids=input_ids, |
|
max_length=max_length, |
|
min_length=min_length, |
|
do_sample=True, |
|
top_p=top_p, |
|
num_return_sequences=1, |
|
eos_token_id=self.tokenizer.sep_token_id, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
repetition_penalty=1.1, |
|
**model_kwargs, |
|
) |
|
else: |
|
|
|
outputs = self.text_decoder.generate( |
|
input_ids=input_ids, |
|
max_length=max_length, |
|
min_length=min_length, |
|
num_beams=num_beams, |
|
eos_token_id=self.tokenizer.sep_token_id, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
repetition_penalty=repetition_penalty, |
|
**model_kwargs, |
|
) |
|
|
|
captions = [] |
|
for output in outputs: |
|
caption = self.tokenizer.decode(output, skip_special_tokens=True) |
|
captions.append(caption[len(self.prompt) :]) |
|
return captions |
|
|
|
|
|
def blip_decoder(pretrained="", **kwargs): |
|
model = BLIP_Decoder(**kwargs) |
|
if pretrained: |
|
model, msg = load_checkpoint(model, pretrained) |
|
assert len(msg.missing_keys) == 0 |
|
return model |
|
|
|
|
|
def blip_feature_extractor(pretrained="", **kwargs): |
|
model = BLIP_Base(**kwargs) |
|
if pretrained: |
|
model, msg = load_checkpoint(model, pretrained) |
|
assert len(msg.missing_keys) == 0 |
|
return model |
|
|
|
|
|
def init_tokenizer(): |
|
try: |
|
bert_pth = os.path.join(get_original_cwd(), "bert-base-uncased") |
|
tokenizer = BertTokenizer.from_pretrained(bert_pth) |
|
except: |
|
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") |
|
|
|
tokenizer.add_special_tokens({"bos_token": "[DEC]"}) |
|
tokenizer.add_special_tokens({"additional_special_tokens": ["[ENC]"]}) |
|
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] |
|
return tokenizer |
|
|
|
|
|
def create_vit( |
|
vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0 |
|
): |
|
assert vit in ["base", "large"], "vit parameter must be base or large" |
|
if vit == "base": |
|
vision_width = 768 |
|
visual_encoder = VisionTransformer( |
|
img_size=image_size, |
|
patch_size=16, |
|
embed_dim=vision_width, |
|
depth=12, |
|
num_heads=12, |
|
use_grad_checkpointing=use_grad_checkpointing, |
|
ckpt_layer=ckpt_layer, |
|
drop_path_rate=0 or drop_path_rate, |
|
) |
|
elif vit == "large": |
|
vision_width = 1024 |
|
visual_encoder = VisionTransformer( |
|
img_size=image_size, |
|
patch_size=16, |
|
embed_dim=vision_width, |
|
depth=24, |
|
num_heads=16, |
|
use_grad_checkpointing=use_grad_checkpointing, |
|
ckpt_layer=ckpt_layer, |
|
drop_path_rate=0.1 or drop_path_rate, |
|
) |
|
else: |
|
raise NotImplementedError |
|
return visual_encoder, vision_width |
|
|
|
|
|
def is_url(url_or_filename): |
|
parsed = urlparse(url_or_filename) |
|
return parsed.scheme in ("http", "https") |
|
|
|
|
|
def load_checkpoint(model, url_or_filename): |
|
if is_url(url_or_filename): |
|
cached_file = download_cached_file( |
|
url_or_filename, check_hash=False, progress=True |
|
) |
|
checkpoint = torch.load(cached_file, map_location="cpu") |
|
elif os.path.isfile(url_or_filename): |
|
checkpoint = torch.load(url_or_filename, map_location="cpu") |
|
else: |
|
raise RuntimeError(f"checkpoint {url_or_filename} is invalid") |
|
|
|
state_dict = checkpoint["model"] |
|
state_dict = remove_module(state_dict) |
|
|
|
state_dict["visual_encoder.pos_embed"] = interpolate_pos_embed( |
|
state_dict["visual_encoder.pos_embed"], model.visual_encoder |
|
) |
|
if "visual_encoder_m.pos_embed" in model.state_dict().keys(): |
|
state_dict["visual_encoder_m.pos_embed"] = interpolate_pos_embed( |
|
state_dict["visual_encoder_m.pos_embed"], model.visual_encoder_m |
|
) |
|
for key in model.state_dict().keys(): |
|
if key in state_dict.keys(): |
|
if state_dict[key].shape != model.state_dict()[key].shape: |
|
del state_dict[key] |
|
|
|
msg = model.load_state_dict(state_dict, strict=False) |
|
print("load checkpoint from %s" % url_or_filename) |
|
return model, msg |
|
|
|
|
|
def remove_module(state_dict): |
|
new_state_dict = {} |
|
for key in state_dict.keys(): |
|
if key.startswith("module."): |
|
new_state_dict[key[7:]] = state_dict[key] |
|
else: |
|
new_state_dict[key] = state_dict[key] |
|
return new_state_dict |
|
|