Spaces:
Sleeping
Sleeping
File size: 15,425 Bytes
10c688c 42296ae 10c688c 42296ae 10c688c 42296ae 10c688c 42296ae 10c688c 42296ae 10c688c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import torch
import torch.nn as nn
import math
class ExtractPatches(nn.Module):
def __init__(self, patch_size: int = 16):
super().__init__()
self.patch_size = patch_size
self.unfold = nn.Unfold(kernel_size=patch_size, stride=patch_size)
def forward(self, x):
batch_size, c, h, w = x.shape
# Unfold applies a slding window to generate patches
# The transpose and reshape change the shape to (batch_size, num_patches, 3 * patch_size * patch_size), flattening the patches
return (
self.unfold(x)
.transpose(1, 2)
.reshape(batch_size, -1, c * self.patch_size * self.patch_size)
)
# Positional Encoding
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int):
"""
d_model: dimensions of the embeddings (number of values in each embedding vector)
"""
super().__init__()
# Intead of precomputing fixed values, we will compute in the forward pass based off of the sinusodiual encoding formula
self.d_model = d_model
def forward(self, x):
device = x.device
half_dim = self.d_model // 2 # Use half for sin and half for cos
emb = math.log(10000.0) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
emb = x[:, None] * emb[None, :] # (batch_size, half_dim)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
# Multi-Head Self-Attention
class MultiHeadAttention(nn.Module):
def __init__(self, d_model: int = 512, n_heads: int = 8, dropout: float = 0.1):
"""
d_model: dimensions of the embeddings (number of values in each embedding vector)
n_heads: number of self attention heads per sequence
dropout: probability of dropout
"""
super().__init__()
assert (
d_model % n_heads == 0
) # We want to make sure that the dimensions are split evenly among the attention heads.
self.d_model = d_model
self.n_heads = n_heads
self.d_key = d_model // n_heads
self.Wq = nn.Linear(d_model, d_model) # Learnable weights for query
self.Wk = nn.Linear(d_model, d_model) # Learnable weights for key
self.Wv = nn.Linear(d_model, d_model) # Learnable weights for value
self.Wo = nn.Linear(d_model, d_model) # Learnable weights for output
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
"""
query: (batch_size, q_length, d_model)
key: (batch_size, k_length, d_model)
value: (batch_size, s_length, d_model)
"""
batch_size = key.size(0)
# Matrix multiplication for Q, K, and V tensors
Q = self.Wq(query)
K = self.Wk(key)
V = self.Wv(value)
# Split each tensor into heads
Q = Q.view(batch_size, -1, self.n_heads, self.d_key).permute(
0, 2, 1, 3
) # (batch_size, n_heads, q_length, d_key)
K = K.view(batch_size, -1, self.n_heads, self.d_key).permute(
0, 2, 1, 3
) # (batch_size, n_heads, k_length, d_key)
V = V.view(batch_size, -1, self.n_heads, self.d_key).permute(
0, 2, 1, 3
) # (batch_size, n_heads, v_length, d_key)
# Scaled dot product
# K^T becomees (batch_size, n_heads, d_key, k_length)
scaled_dot_product = torch.matmul(Q, K.permute(0, 1, 3, 2)) / math.sqrt(
self.d_key
) # (batch_size, n_heads, q_length, k_length)
if mask is not None:
scaled_dot_product = scaled_dot_product.masked_fill(
mask == 0, -float("inf")
) # Filling it with 0 would result in 1 after the mask because e^0 = 1. Intead we fill it with an infinitley large negative number
# Softmax function for attention probabilities
attention_probs = torch.softmax(scaled_dot_product, dim=-1)
# Multiply by V to get attention with respect to the values
A = torch.matmul(self.dropout(attention_probs), V)
# Reshape attention back to (batch_size, q_length, d_model)
A = (
A.permute(0, 2, 1, 3)
.contiguous()
.view(batch_size, -1, self.n_heads * self.d_key)
)
# Pass through the final linear layer
output = self.Wo(A)
return (
output,
attention_probs,
) # Output shape: (batch_size, q_length, d_model), Attention probs shape: (batch_size, n_heads, q_length, k_length)
# Position-Wise Feed Forward Network (FFN)
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model: int, dropout: float = 0.1):
"""
d_model: dimensions of the embeddings (number of values in each embedding vector)
dropout: probability of dropout
"""
super().__init__()
self.ffn = nn.Sequential(
nn.Linear(in_features=d_model, out_features=(d_model * 4)),
nn.ReLU(),
nn.Linear(in_features=(d_model * 4), out_features=d_model),
nn.Dropout(p=dropout),
)
def forward(self, x):
return self.ffn(x)
# Encoder Layer
class EncoderLayer(nn.Module):
def __init__(self, d_model: int, n_heads: int, dropout: float = 0.1):
"""
d_model: dimensions of the embeddings (number of values in each embedding vector)
n_heads: number of self attention heads per sequence
dropout: probability of dropout
"""
super().__init__()
# Multi-Head Self-Attention sublayer
self.attention = MultiHeadAttention(
d_model=d_model, n_heads=n_heads, dropout=dropout
)
self.attention_layer_norm = nn.LayerNorm(d_model) # Layer normalization
# Position-wise Feed-forward Network
self.position_wise_ffn = PositionwiseFeedForward(
d_model=d_model, dropout=dropout
)
self.ffn_layer_norm = nn.LayerNorm(d_model) # Layer normalization
self.dropout = nn.Dropout(p=dropout)
def forward(self, src):
"""
src: embedded sequences (batch_size, seq_length, d_model)
"""
# Multi-Head Attention
_src, attention_probs = self.attention(
src, src, src, None
) # Q, K, V, src_mask: we don't need a source mask because all images are the same dimension
# Residual Addition and Layer Normalization
src = self.attention_layer_norm(
src + self.dropout(_src)
) # We do residual addition by adding back the src (the embeddings) to the output of Self-Attention
# Position-wise Feed-forward Network
_src = self.position_wise_ffn(src)
# Residual Addition and Layer Normalization
src = self.ffn_layer_norm(src + self.dropout(_src))
return src, attention_probs
# The Encoder that takes in images and returns the encoding to be passed into the decoder
class Encoder(nn.Module):
def __init__(
self,
image_size: int,
in_channels: int,
patch_size: int = 16,
d_model: int = 128,
n_layers: int = 3,
n_heads: int = 4,
dropout: float = 0.1,
):
"""
d_model: dimensions of the embeddings (number of values in each embedding vector)
n_layers: number of encoder layers in the encoder block
n_heads: number of self attention heads per sequence
dropout: probability of dropout
"""
super().__init__()
self.patch_size = patch_size
self.extract_patches = ExtractPatches(patch_size=patch_size)
self.fc_in = nn.Linear(in_channels * patch_size * patch_size, d_model)
seq_length = (image_size // patch_size) ** 2
# Image src is going to use a learnable positional encoding
self.pos_embedding = nn.Parameter(
torch.empty(1, seq_length, d_model).normal_(std=0.02)
)
# Create n_layers encoders
self.layers = nn.ModuleList(
[
EncoderLayer(d_model=d_model, n_heads=n_heads, dropout=dropout)
for layer in range(n_layers)
]
)
self.dropout = nn.Dropout(p=dropout)
def forward(self, src):
"""
src: embedded sequences (batch_size, seq_length, d_model)
"""
# Extract the patches and apply a linear layer
batch_size = src.shape[0]
src = self.fc_in(self.extract_patches(src))
# Add the learned positional embedding
src = src + self.pos_embedding
# Pass the sequences through each encoder layer
for layer in self.layers:
src, attention_probs = layer(src)
self.attention_probs = attention_probs
return src
# Decoder Layer
class DecoderLayer(nn.Module):
def __init__(self, d_model: int, n_heads: int, dropout: float = 0.1):
"""
d_model: dimensions of the embeddings (number of values in each embedding vector)
n_heads: number of self attention heads per sequence
dropout: probability of dropout
"""
super().__init__()
# Masked Multi-Head Self-Attention sublayer
self.masked_attention = MultiHeadAttention(
d_model=d_model, n_heads=n_heads, dropout=dropout
)
self.masked_attention_layer_norm = nn.LayerNorm(d_model) # Layer normalization
# Multi-Head Self-Attention sublayer
self.attention = MultiHeadAttention(
d_model=d_model, n_heads=n_heads, dropout=dropout
)
self.attention_layer_norm = nn.LayerNorm(d_model) # Layer normalization
# Position-wise Feed-forward Network
self.position_wise_ffn = PositionwiseFeedForward(
d_model=d_model, dropout=dropout
)
self.ffn_layer_norm = nn.LayerNorm(d_model) # Layer normalization
self.dropout = nn.Dropout(p=dropout)
def forward(self, trg, src, trg_mask):
"""
trg: embedded captions (batch_size, trg_seq_length, d_model)
src: embedded images (batch_size, src_seq_length, d_model)
trg_mask: mask for the captions preventing peeking at future tokens (batch_size, 1, trg_seq_length, trg_seq_length)
"""
# Masked Multi-Head Attention
# The target mask is used to prevent the model from seeing future tokens. This ensures that the prediction is made solely based on past and present tokens.
_trg, masked_attention_probs = self.masked_attention(
trg, trg, trg, trg_mask
) # Q, K, V, mask
# Residual Addition and Layer Normalization
trg = self.masked_attention_layer_norm(trg + self.dropout(_trg))
# Multi-Head Attention - This time, we also pass in the output of the encoder layers as src.
# This is important because this allows us to keep track of and learn relationships between the input and output tokens.
_trg, attention_probs = self.attention(trg, src, src, None) # Q, K, V, mask
# Residual Addition and Layer Normalization
trg = self.attention_layer_norm(trg + self.dropout(_trg))
# Position-wise Feed-forward Network
_trg = self.position_wise_ffn(trg)
# Residual Addition and Layer Normalization
trg = self.ffn_layer_norm(trg + self.dropout(_trg))
return trg, attention_probs, masked_attention_probs
# The Decoder Module that takes the encoded images from the encoder and generates captions
class Decoder(nn.Module):
def __init__(
self,
vocab_size: int,
d_model: int = 128,
n_layers: int = 3,
n_heads: int = 4,
dropout: float = 0.1,
):
"""
vocab_size: size of the target vocabulary
d_model: dimensions of the embeddings (number of values in each embedding vector)
n_layers: number of encoder layers in the encoder block
n_heads: number of self attention heads per sequence
dropout: probability of dropout
"""
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.embedding.weight.data = 0.001 * self.embedding.weight.data
# Initialize sinusoidal positional embeddings
self.pos_emb = PositionalEncoding(d_model=d_model)
# Create n_layers decoders
self.layers = nn.ModuleList(
[
DecoderLayer(d_model=d_model, n_heads=n_heads, dropout=dropout)
for layer in range(n_layers)
]
)
self.dropout = nn.Dropout(p=dropout)
# Output layer
self.Wo = nn.Linear(in_features=d_model, out_features=vocab_size)
def make_trg_mask(self, trg):
seq_length = trg.shape[1]
trg_mask = torch.tril(
torch.ones((seq_length, seq_length), device=trg.device)
).bool()
return trg_mask.unsqueeze(0).unsqueeze(
0
) # (batch_size=1, n_heads=1, seq_length, seq_length)
def forward(self, trg, src):
"""
trg: target sequences (batch_size, trg_seq_length, d_model)
src: embedding images (batch_size, src_seq_length, d_model)
"""
# Embed the target captions
trg = self.embedding(trg)
batch_size, l, h = trg.shape
trg_index = torch.arange(l, device=trg.device)
pos_emb = self.pos_emb(trg_index).reshape(1, l, h).expand(batch_size, l, h)
# Add the fixed sinusodial positional embedding
trg += pos_emb
# Create a target mask for the target captions to prevent the model from peeking at future tokens
trg_mask = self.make_trg_mask(
trg
) # (batch_size, 1, trg_seq_length, trg_seq_length)
# Pass the sequences through each decoder layer
for layer in self.layers:
trg, attention_probs, masked_attention_probs = layer(trg, src, trg_mask)
self.attention_probs = attention_probs
self.masked_attention_probs = masked_attention_probs # (batch_size, n_heads, trg_seq_len, src_seq_len) trg_seq_len: length of the target caption \ src_seq_len: number of patches from the encoder
# Final linear output layer
return self.Wo(trg)
class CaptioningTransformer(nn.Module):
def __init__(
self,
image_size: int,
in_channels: int,
vocab_size: int,
device,
patch_size: int = 16,
d_model: int = 128,
n_layers: int = 3,
n_heads: int = 4,
):
super().__init__()
self.device = device
# Create an encoder and decoder with specified parameters
self.encoder = Encoder(
image_size=image_size,
in_channels=in_channels,
patch_size=patch_size,
d_model=d_model,
n_layers=n_layers,
n_heads=n_heads,
)
self.decoder = Decoder(
vocab_size=vocab_size, d_model=d_model, n_layers=n_layers, n_heads=n_heads
)
def forward(self, src, trg):
# Encoder layers
src = self.encoder(src) # (batch_size, src_seq_length, d_model)
# Decoder layers
output = self.decoder(
trg, src
) # Pass in both the target (for Masked Multi-Head Self-Attention) and source for (Cross-Attention)
return output
|