File size: 23,445 Bytes
eba7634
2426cfc
317cbd3
 
086d84c
317cbd3
 
 
21c0d59
6241eca
317cbd3
 
 
 
 
 
902d295
 
 
 
317cbd3
 
 
3435229
6241eca
 
317cbd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80f2097
317cbd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
938479a
 
 
317cbd3
 
 
ede4e29
317cbd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e76f77d
19d2432
317cbd3
 
 
 
 
175c8bd
317cbd3
 
 
 
 
 
 
 
998b2fe
317cbd3
175c8bd
317cbd3
 
 
 
 
 
 
 
 
dca41b6
4059a52
 
 
 
 
 
dca41b6
19159ab
19d2432
317cbd3
 
6a15afa
19d2432
317cbd3
 
 
19d2432
317cbd3
 
 
 
 
 
 
 
 
e8f143d
317cbd3
19d2432
317cbd3
 
 
 
 
 
 
 
 
4059a52
 
 
 
 
 
 
 
 
 
 
 
317cbd3
 
 
 
 
 
 
 
3435229
317cbd3
 
175c8bd
317cbd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d2432
317cbd3
 
6a15afa
19d2432
 
317cbd3
19d2432
 
 
317cbd3
 
 
19d2432
317cbd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6241eca
 
 
797f680
 
3771112
 
0e0ec56
6241eca
 
 
 
 
 
 
 
 
 
 
80f2097
6241eca
 
 
 
ca49974
6241eca
 
 
 
 
c43104d
6241eca
c43104d
6241eca
 
 
 
 
 
 
 
 
 
317cbd3
 
 
6241eca
317cbd3
 
6241eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d2432
6241eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d2432
6241eca
 
 
 
 
 
 
 
 
 
 
 
317cbd3
 
 
e76f77d
317cbd3
c736486
 
 
317cbd3
c736486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deed684
c736486
712bc9c
c736486
 
 
dca41b6
b1097fc
c736486
 
 
317cbd3
 
 
a20f3aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

import spaces
import gradio as gr
import random
import os
import re
from gradio_client import Client, file

client = Client(os.environ['src'])

BASE_PATH = "Inference"
RU_RANDOM_TEXTS_PATH = os.path.join(BASE_PATH, "random_texts.txt")
EN_RANDOM_TEXTS_PATH = os.path.join(BASE_PATH, "english_random_texts.txt")
RU_PROMPT_TEXTS_PATH = os.path.join(BASE_PATH, "prompt.txt")
EN_PROMPT_TEXTS_PATH = os.path.join(BASE_PATH, "english_prompt.txt")

@spaces.GPU
def dummy():
    return
    
def load_texts(filepath):
    if not os.path.exists(os.path.dirname(filepath)) and os.path.dirname(filepath) != '':
         print(f"Warning: Directory '{os.path.dirname(filepath)}' not found.")
      
         if "random" in filepath: return ["Default example text."]
         else: return ["Speaker: Default prompt text."]
    try:
        try:
            with open(filepath, 'r', encoding='utf-8') as f:
                return [line.strip() for line in f if line.strip()]
        except UnicodeDecodeError:
            print(f"Warning: UTF-8 decode failed for {filepath}. Trying 'cp1251' (common for Russian)...")
            with open(filepath, 'r', encoding='cp1251') as f:
                 return [line.strip() for line in f if line.strip()]
    except FileNotFoundError:
        print(f"Warning: File not found - {filepath}")
        if "english" in filepath and "random" in filepath:
            return ["Example English text file not found."]
        elif "random" in filepath:
            return ["Пример русского текстового файла не найден."]
        elif "english" in filepath and "prompt" in filepath:
             return ["Speaker: Example English prompt file not found."]
        elif "prompt" in filepath:
             return ["Диктор: Пример русского файла подсказок не найден."]
        else:
             return ["Example text file not found."]
    except Exception as e:
        print(f"Error loading {filepath}: {e}")
        return ["Error loading example texts."]

ru_random_texts_list = load_texts(RU_RANDOM_TEXTS_PATH)
en_random_texts_list = load_texts(EN_RANDOM_TEXTS_PATH)
ru_prompt_texts_list = load_texts(RU_PROMPT_TEXTS_PATH)
en_prompt_texts_list = load_texts(EN_PROMPT_TEXTS_PATH)

def create_example_dict(text_list):
    if not text_list or not isinstance(text_list[0], str):
        return {"No examples found": ""}
    return {f"{text[:30]}...": text for text in text_list}

ru_prompt_examples = create_example_dict(ru_prompt_texts_list)
en_prompt_examples = create_example_dict(en_prompt_texts_list)


VOICE_DIR = "./reference_sample_wavs"
try:
    if os.path.exists(VOICE_DIR) and os.path.isdir(VOICE_DIR):
        voicelist = sorted([v for v in os.listdir(VOICE_DIR) if os.path.isfile(os.path.join(VOICE_DIR, v)) and v.lower().endswith(('.wav', '.mp3', '.flac'))])
        if not voicelist:
           print(f"Warning: No compatible audio files found in {VOICE_DIR}. Dropdown will be empty.")
           voicelist = ["default.wav"]
    else:
        print(f"Warning: Voice directory not found or is not a directory: {VOICE_DIR}. Using placeholder list.")
        voicelist = ["anna_studio.wav", "boris_clear.wav", "female_neutral.wav", "male_deep.wav"]
except Exception as e:
    print(f"Error listing voices in {VOICE_DIR}: {e}")
    voicelist = ["error_loading_voices"]


def update_text_input_longform(preview_key, is_english):
    examples_dict = en_prompt_examples if is_english else ru_prompt_examples
    if preview_key in examples_dict:
        return examples_dict[preview_key]
    elif examples_dict:
         return list(examples_dict.values())[0]
    else:
         return "Selected example not found or examples failed to load."


def generate_random_spk(is_english):
    if is_english:
        rand_id = random.randint(0, 2006)
        print(f"Generated random English Speaker ID: {rand_id}")
        return rand_id
    else:
        rand_id = random.randint(0, 196)
        print(f"Generated random Russian Speaker ID: {rand_id}")
        return rand_id


def Client_Synthesize_Audio(text, voice, voice2_path, spk_id, vcsteps, embscale, beta, ros, t, language_checkbox):
    print("--- Client: Calling Synthesize_Audio ---")
    print(f"Text: {text[:50]}...")
    print(f"Default Voice: {voice}")
    print(f"Uploaded Voice Path: {voice2_path}")
    print(f"Speaker ID: {spk_id}")
    print(f"Steps: {vcsteps}, Scale: {embscale}, Beta: {beta}, RoS: {ros}, T: {t}")
    print(f"English Mode: {language_checkbox}")

    if voice2_path is not None:
        voice2_path = {"path": voice2_path, "meta": {"_type": "gradio.FileData"}}

    voice2_arg = voice2_path

    try:
        
        result = client.predict(
            text,
            voice,
            voice2_arg,
            spk_id,
            vcsteps,
            embscale,
            beta,
            ros,
            t,
            language_checkbox,
            api_name="/Synthesize_Audio"
        )
        print("--- Client: Synthesize_Audio call successful ---")
        return result
    except Exception as e:
        print(f"--- Client: Error calling Synthesize_Audio: {e} ---")
        import numpy as np
        return (44100, np.zeros(1))

def Client_PromptedSynth_Text(text, beta, t, diffusion_steps, embedding_scale, ros, language_checkbox):
    print("--- Client: Calling PromptedSynth_Text ---")
    print(f"Text: {text[:50]}...")
    print(f"Beta: {beta}, T: {t}, Steps: {diffusion_steps}, Scale: {embedding_scale}, RoS: {ros}")
    print(f"English Mode: {language_checkbox}")

    try:
        result = client.predict(
            text,
            beta,
            t,
            diffusion_steps,
            embedding_scale,
            ros,
            language_checkbox,
            api_name="/PromptedSynth_Text"
        )
        print("--- Client: PromptedSynth_Text call successful ---")
        return result
    except Exception as e:
        print(f"--- Client: Error calling PromptedSynth_Text: {e} ---")
        import numpy as np
        return (44100, np.zeros(1))


# Repo -> [Hugging Face - 🤗](https://huggingface.co./Respair/xxx) later
INTROTXT = """Update v0.01: Darya (RU) now supports style diffusion as well. """


with gr.Blocks() as audio_inf:
    with gr.Row():
        with gr.Column(scale=1):
            language_checkbox_audio = gr.Checkbox(label="English?", value=False,
                                            info="Tick for English synthesis, leave unchecked for Russian.")
            inp = gr.Textbox(label="Text",
                             info="Enter the text for voice-guided synthesis.",
                             value=ru_random_texts_list[0],
                             interactive=True,
                             scale=5)

            voice = gr.Dropdown(choices=voicelist,
                                label="Default Reference Voice (make sure it matches the language)",
                                info="Select a pre-defined reference voice.",
                                value=voicelist[7] if voicelist else None,
                                interactive=True)
            voice_2 = gr.Audio(label="Upload Your Audio Reference (Overrides Default Voice & Speaker ID)",
                               sources=["upload", "microphone"],
                               interactive=True,
                               type='filepath',
                               waveform_options={'waveform_color': '#a3ffc3', 'waveform_progress_color': '#e972ab'})


            with gr.Accordion("Advanced Parameters", open=False):

                spk_id = gr.Number(label="Speaker ID (randomly picking a sample based on the ID - may result in subpar / broken audio)",
                                   info="Input speaker ID (max 196 Ru / 2006 En) to use a random sample from that speaker on the server. 9999 disables.",
                                   value=9999,
                                   interactive=True)
    
                random_spk_btn = gr.Button("Random")

                beta = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1,
                                 label="Beta (Diffusion Strength vs. Reference)",
                                 info="Diffusion parameter. Higher means LESS like the reference audio. 0 disables diffusion.",
                                 interactive=True)
                multispeakersteps = gr.Slider(minimum=3, maximum=15, value=3, step=1,
                                              label="Diffusion Steps",
                                              info="More steps can improve quality but increase inference time.",
                                              interactive=True)
                embscale = gr.Slider(minimum=1, maximum=5, value=1, step=0.1,
                                     label="Embedding Scale (Intensity)",
                                     info="Impacts expressiveness. High values (> 1.5) might cause artifacts.",
                                     interactive=True)
                rate_of_speech = gr.Slider(minimum=0.5, maximum=2,
                                           value=1,
                                           step=0.1,
                                           label="Rate of Speech",
                                           info="Adjusts speech speed. 1.0 is normal.",
                                           interactive=True)

                t = gr.Slider(minimum=0.1, maximum=2, value=0.7, step=0.05,
                              label="T (Duration / Temperature)",
                              info="inflence of previous sentence on the current one",
                              interactive=True)

        with gr.Column(scale=1):
            btn = gr.Button("Synthesize (Voice Guided)", variant="primary")
            audio = gr.Audio(interactive=False,
                             label="Synthesized Audio",
                             waveform_options={'waveform_color': '#a3ffc3', 'waveform_progress_color': '#e972ab'})


    def update_audio_inf_defaults(is_english):
        new_text_value = en_random_texts_list[0] if is_english else ru_random_texts_list[0]
        new_spk_info = "Input speaker ID (max 2006 En) or use Randomize. 9999 disables." if is_english else "Input speaker ID (max 196 Ru) or use Randomize. 9999 disables."
        new_spk_val = 9999
        return gr.update(value=new_text_value), gr.update(info=new_spk_info, value=new_spk_val)


    language_checkbox_audio.change(update_audio_inf_defaults,
                                   inputs=[language_checkbox_audio],
                                   outputs=[inp, spk_id])

    random_spk_btn.click(fn=generate_random_spk, inputs=[language_checkbox_audio], outputs=spk_id)

    btn.click(Client_Synthesize_Audio,
              inputs=[inp, voice, voice_2, spk_id, multispeakersteps, embscale, beta, rate_of_speech, t, language_checkbox_audio],
              outputs=[audio],
              concurrency_limit=4)


with gr.Blocks() as longform:
 
    with gr.Row():
        with gr.Column(scale=1):
            language_checkbox_longform = gr.Checkbox(label="English?", value=False,
                                               info="Tick for English synthesis, leave unchecked for Russian.")
            inp_longform = gr.Textbox(label="Text",
                                      info="Enter text; check the format from the examples.",
                                      value=ru_prompt_texts_list[0],
                                      lines=5,
                                      interactive=True,
                                      scale=5)

            with gr.Row():
                example_dropdown = gr.Dropdown(choices=list(ru_prompt_examples.keys()),
                                               label="Example Prompts",
                                               info="Select an example to load into the text box.",
                                               value=list(ru_prompt_examples.keys())[0] if ru_prompt_examples else None,
                                               interactive=True)

            with gr.Accordion("Advanced Parameters", open=False):
                beta_longform = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.1,
                                          label="Beta (Diffusion Strength vs. Semantic Encoder)",
                                          info="Diffusion parameter. Higher means LESS like the inferred style from text. 0 disables diffusion.",
                                          interactive=True)
                diffusion_steps_longform = gr.Slider(minimum=3, maximum=50, value=3, step=1,
                                                     label="Diffusion Steps",
                                                      info="More steps can improve diversity but increase inference time, it won't necessarily make it better.",
                                                     interactive=True)
                embedding_scale_longform = gr.Slider(minimum=1, maximum=10, value=1, step=0.1,
                                              label="Embedding Scale (Intensity)",
                                              info="Impacts expressiveness.",
                                              interactive=True)
                rate_of_speech_longform = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1,
                                                    label="Rate of Speech",
                                                    info="Adjusts speech speed. 1.0 is normal. it may not respond to tiny adjustments.",
                                                    interactive=True)
                t_longform = gr.Slider(minimum=0.1, maximum=2, value=0.8, step=0.1,
                                        label="T (Style Consistency - Primarily English)",
                                        info="Controls the influence of previous sentences' style on the current one.",
                                        interactive=True)


        with gr.Column(scale=1):
            btn_longform = gr.Button("Synthesize (Text Guided)", variant="primary")
            audio_longform = gr.Audio(interactive=False,
                                      label="Synthesized Audio",
                                      waveform_options={'waveform_color': '#a3ffc3', 'waveform_progress_color': '#e972ab'})


    def update_longform_defaults(is_english):
        examples_dict = en_prompt_examples if is_english else ru_prompt_examples
        new_choices = list(examples_dict.keys())
        new_value = new_choices[0] if new_choices else None
        new_text_value = examples_dict.get(new_value, list(examples_dict.values())[0] if examples_dict else ("Speaker: Example text." if is_english else "Диктор: Пример текста."))

        return gr.update(choices=new_choices, value=new_value), gr.update(value=new_text_value)

    language_checkbox_longform.change(update_longform_defaults,
                                      inputs=[language_checkbox_longform],
                                      outputs=[example_dropdown, inp_longform])

    example_dropdown.change(fn=update_text_input_longform,
                            inputs=[example_dropdown, language_checkbox_longform],
                            outputs=[inp_longform])

    btn_longform.click(Client_PromptedSynth_Text,
                        inputs=[inp_longform,
                                beta_longform,
                                t_longform,
                                diffusion_steps_longform,
                                embedding_scale_longform,
                                rate_of_speech_longform,
                                language_checkbox_longform],
                        outputs=[audio_longform],
                        concurrency_limit=4)

user_guide_html = f"""
<div style="background-color: rgba(30, 30, 30, 0.9); color: #f0f0f0; padding: 20px; border-radius: 10px; border: 1px solid #444;">
    <h2 style="border-bottom: 1px solid #555; padding-bottom: 5px;">Quick Notes:</h2>

    <p> This is run on a single RTX 3090. </p>
    <p> These networks can only generate natural speech with correct intonations (i.e generating NSFW, non-speech sounds, stutters etc. doesn't work) </p>
    <p> Make sure your inputs are not too short (more than a sentence long). </p>
    <p> I will gradually update here and -> <a href="https://github.com/Respaired/Project_Kalliope" target="_blank" style="color: #77abff;">Github</a> </p>
    <p>Everything in this demo & the repo (coming soon) is experimental. The main idea is just playing around with different things to see what works when you're limited to training on a pair of RTX 3090s.</p>
    <p>The data used for the english model is rough and pretty tough for any TTS model (think debates, real conversations, plus a little bit of cleaner professional performances). It mostly comes from public sources or third parties (no TOS signed). I'll probably write a blog post later with more details.</p>
    <p>So far I focused on English and Russian, more can be covered.</p>

    <hr style="border-color: #555; margin: 15px 0;">

    <h3 style="color: #a3ffc3;">Voice-Guided Tab (Using Audio Reference)</h3>
    <h4>Options:</h4>
    <ul>
        <li><b>Default Voices:</b> Pick one from the dropdown (these are stored locally).</li>
        <li><b>Upload Audio:</b> While the data isn't nearly enough for zero-shotting, you can still test your own samples. Make sure to decrease the beta if it didn't sound similar.</li>
        <li><b>Speaker ID:</b> Use a number (RU: 0-196, EN: 0-2006) to grab a random clip of that speaker from the server's dataset. Hit 'Randomize' to explore. (Invalid IDs use a default voice on the server).</li>
    </ul>
    <h4>Some notes:</h4>
    <ul>
        <li><b>Not all speakers are equal.</b> Randomized samples might give you a poor reference sometimes.</li>
        <li><b>IDs are not accurate. :</b> since the base model didn't require one and it was automatically generated so the same ID can give you different speakers.</li>
        <li><b>Play with Beta:</b> Values from 0.2 to 0.9 can work well. Higher Beta = LESS like the reference. It works great for some voices, breaks others. Please play with different values. (0 = diffusion off).</li>
    </ul>

    <hr style="border-color: #555; margin: 15px 0;">

    <h3 style="color: #a3ffc3;">Text-Guided Tab (Style is conditioned on the information and contents of the text)</h3>
    <ul>
        <li><b>Intuition:</b> it will Figure out the voice style just from the text itself (using semantic encoders). No audio needed, which makes it suitable for real-time use cases.</li>
        <li><b>Speaker Prefix:</b> For Russian, you can use 'Speaker_ + number:'. As for the English, you can use any names. Names were randomly assigned during the training of the Encoder.</li>
    </ul>

    <hr style="border-color: #555; margin: 15px 0;">

    <h3 style="color: #a3ffc3;">General Tips</h3>
    <ul>
        <li>Punctuation matters for intonation; don't use unsupported symbols.</li>
    </ul>
</div>
"""

with gr.Blocks() as info_tab:
    gr.HTML(user_guide_html) # Use HTML component

# --- Model Details Tab (Reformatted User Text) ---
# Convert Markdown-like text to basic HTML for styling
model_details_html = """
<div style="background-color: rgba(30, 30, 30, 0.9); color: #f0f0f0; padding: 20px; border-radius: 10px; border: 1px solid #444;">
    <h2 style="border-bottom: 1px solid #555; padding-bottom: 5px;">Model Details (The Guts)</h2>

    <hr style="border-color: #555; margin: 15px 0;">

    <h3 style="color: #e972ab;">Darya (Russian Model) - More Stable</h3>
    <p>Generally more controlled than the English one. That's also why in terms of acoustic quality it should sound much better.</p>
    <ul>
        <li><b>Setup:</b> Non-End-to-End (separate steps).</li>
        <li><b>Components:</b>
            <ul>
                <li>Style Encoder: Conformer-based.</li>
                <li>Duration Predictor: Conformer-based (with cross-attention).</li>
                <li>Semantic Encoder: <code>RuModernBERT-base</code> (for text-guidance).</li>
                <li>Diffusion Sampler: <b>**Yes**.</b></li>
            </ul>
        </li>
        <li><b>Vocoder:</b> <a href="https://github.com/Respaired/RiFornet_Vocoder" target="_blank" style="color: #77abff;">RiFornet</a></li>
        <li><b>Training:</b> ~200K steps on ~320 hours of Russian data (mix of conversation & narration, hundreds of speakers).</li>
        <li><b>Size:</b> Lightweight (~< 200M params).</li>
        <li><b>Specs:</b> 44.1kHz output, 128 mel bins.</li>
    </ul>

    <hr style="border-color: #555; margin: 15px 0;">

    <h3 style="color: #e972ab;">Kalliope (English Model) - Wild</h3>
    <p>More expressive potential, but also less predictable. Showed signs of overfitting on the noisy data.</p>
    <ul>
        <li><b>Setup:</b> Non-End-to-End.</li>
        <li><b>Components:</b>
            <ul>
                <li>Style Encoder: Conformer-based.</li>
                <li>Text Encoder: <code>ConvNextV2</code>.</li>
                <li>Duration Predictor: Conformer-based (with cross-attention).</li>
                <li>Acoustic Decoder: Conformer-based.</li>
                <li>Semantic Encoder: <code>DeBERTa V3 Base</code> (for text-guided).</li>
                <li>Diffusion Sampler: <b>Yes.</b></li>
            </ul>
        </li>
        <li><b>Vocoder:</b> <a href="https://github.com/Respaired/RiFornet_Vocoder" target="_blank" style="color: #77abff;">RiFornet</a>.</li>
        <li><b>Training:</b> ~100K steps on ~300-400 hours of <i>very complex & noisy</i> English data (conversational, whisper, narration, wide emotion range).</li>
        <li><b>Size:</b> Bigger (~1.2B params total, but not all active at once - training was surprisingly doable). Hidden dim 1024, Style vector 512.</li>
        <li><b>Specs:</b> 44.1kHz output, 128 mel bins (but more than half the dataset were 22-24khz or even phone-call quality)</li>
    </ul>

    <hr style="border-color: #555; margin: 15px 0;">

    <p><i>More details might show up in a blog post later.</i></p>
</div>
"""

with gr.Blocks() as model_details_tab:
    gr.HTML(model_details_html) 

# theme = gr.themes.Base(
#     font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
# )

# app = gr.TabbedInterface(
#     [longform, audio_inf, info_tab, model_details_tab],
#     ['Text-guided Synthesis', 'Voice-guided Synthesis', 'Intuition & Tips', 'Model Details'],
#     title="The Poor Man's TTS (Experimental)",
#     theme="Respair/[email protected]"
# )


# if __name__ == "__main__":
#     print("Launching Client Gradio App...")
#     app.queue(api_open=False, max_size=15).launch(show_api=False, share=True)




with gr.Blocks(title="The Poor Man's TTS (Experimental 🔧)", theme="Respair/[email protected]") as demo:
    # gr.DuplicateButton("Duplicate Space")
    # gr.Markdown(INTROTXT)


    gr.TabbedInterface(
        [audio_inf, longform, info_tab, model_details_tab],
        ['Reference-guided Synthesis','Text-guided Synthesis', 'Intuition & Tips', 'Model Details'],
        title="The Poor Man's TTS (Experimental)",
        theme="Respair/[email protected]"
    )


if __name__ == "__main__":
    demo.queue(api_open=False, max_size=15).launch(show_api=False, share=False)