Spaces:
Running
Running
File size: 32,068 Bytes
9a73686 2c79988 f351ad2 2c79988 b4174f8 2c79988 9a73686 2c79988 b4174f8 2c79988 9a73686 2c79988 9a73686 2c79988 9a73686 2c79988 9a73686 2c79988 9a73686 2c79988 9a73686 2c79988 f351ad2 2c79988 230e3e0 2c79988 f351ad2 2c79988 230e3e0 f351ad2 2c79988 f351ad2 2c79988 f351ad2 2c79988 230e3e0 2c79988 230e3e0 f351ad2 2c79988 f351ad2 2c79988 230e3e0 2c79988 f351ad2 2c79988 f351ad2 2c79988 f351ad2 2c79988 f351ad2 2c79988 f351ad2 2c79988 230e3e0 2c79988 230e3e0 2c79988 230e3e0 2c79988 230e3e0 2c79988 f351ad2 2c79988 b4174f8 9a73686 2c79988 9a73686 b4174f8 9a73686 2c79988 b4174f8 9a73686 2c79988 b4174f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
import gradio as gr
import json
import tempfile
import os
import re # For parsing conversation
from typing import Union, Optional, Dict, Tuple # Import Dict and Tuple
# Import the actual functions from synthgen
from synthgen import (
generate_synthetic_text,
generate_prompts,
generate_synthetic_conversation,
generate_corpus_content # Import the new function
)
# We no longer need to import api_key here or check it directly in app.py
# --- Helper Functions for JSON Generation ---
# Use Union for Python < 3.10 compatibility
def create_json_file(data: object, base_filename: str) -> Union[str, None]:
"""Creates a temporary JSON file and returns its path."""
try:
# Create a temporary file with a .json extension
with tempfile.NamedTemporaryFile(mode='w', suffix=".json", delete=False, encoding='utf-8') as temp_file:
json.dump(data, temp_file, indent=4, ensure_ascii=False)
return temp_file.name # Return the path to the temporary file
except Exception as e:
print(f"Error creating JSON file {base_filename}: {e}")
return None
# Add the missing function definition
def create_text_file(data: str, base_filename: str) -> Union[str, None]:
"""Creates a temporary text file and returns its path."""
try:
# Ensure filename ends with .txt
if not base_filename.lower().endswith(".txt"):
base_filename += ".txt" # Append if missing for clarity, though suffix handles it
# Create a temporary file with a .txt extension
with tempfile.NamedTemporaryFile(mode='w', suffix=".txt", delete=False, encoding='utf-8') as temp_file:
temp_file.write(data)
return temp_file.name # Return the path to the temporary file
except Exception as e:
print(f"Error creating text file {base_filename}: {e}")
return None
def parse_conversation_string(text: str) -> list[dict]:
"""Parses a multi-line conversation string into a list of message dictionaries."""
messages = []
# Regex to capture "User:" or "Assistant:" at the start of a line, followed by content
pattern = re.compile(r"^(User|Assistant):\s*(.*)$", re.IGNORECASE | re.MULTILINE)
matches = pattern.finditer(text)
for match in matches:
role = match.group(1).lower()
content = match.group(2).strip()
messages.append({"role": role, "content": content})
# If parsing fails or format is unexpected, return raw text in a single message?
# Or return empty list? Let's return what we found.
if not messages and text: # If regex found nothing but text exists
print(f"Warning: Could not parse conversation structure for: '{text[:100]}...'")
# Fallback: return the whole text as a single assistant message? Or user?
# Let's return a generic system message indicating the raw content
# return [{"role": "system", "content": f"Unparsed conversation text: {text}"}]
# Or maybe just return empty, TBD based on preference
pass # Return empty list if parsing fails for now
return messages
# Wrapper for text generation (remains largely the same, but error handling is improved in synthgen)
def run_generation(prompt: str, model: str, num_samples: int) -> str:
"""
Wrapper function for Gradio interface to generate multiple text samples.
Relies on generate_synthetic_text for API calls and error handling.
"""
if not prompt:
return "Error: Please enter a prompt."
if num_samples <= 0:
return "Error: Number of samples must be positive."
output = f"Generating {num_samples} samples using model '{model}'...\n"
output += "="*20 + "\n\n"
# generate_synthetic_text now handles API errors internally
for i in range(num_samples):
# The function returns the text or an error string starting with "Error:"
generated_text = generate_synthetic_text(prompt, model)
output += f"--- Sample {i+1} ---\n"
output += generated_text + "\n\n" # Append result directly
output += "="*20 + "\nGeneration complete (check results above for errors)."
return output
# Removed the placeholder backend functions (generate_prompts_backend, generate_single_conversation)
# Modified function to handle multiple conversation prompts using the real backend
def run_conversation_generation(system_prompts_text: str, model: str, num_turns: int) -> str:
"""
Wrapper function for Gradio interface to generate multiple conversations
based on a list of prompts, calling generate_synthetic_conversation.
"""
if not system_prompts_text:
return "Error: Please enter or generate at least one system prompt/topic."
if num_turns <= 0:
return "Error: Number of turns must be positive."
prompts = [p.strip() for p in system_prompts_text.strip().split('\n') if p.strip()]
if not prompts:
return "Error: No valid prompts found in the input."
output = f"Generating {len(prompts)} conversations ({num_turns} turns each) using model '{model}'...\n"
output += "="*40 + "\n\n"
for i, prompt in enumerate(prompts):
# Call the actual function from synthgen.py
# It handles API calls and returns the conversation or an error string.
conversation_text = generate_synthetic_conversation(prompt, model, num_turns)
# We don't need a try-except here because the function itself returns error strings
# The title is now included within the returned string from the function
output += f"--- Conversation {i+1}/{len(prompts)} ---\n"
output += conversation_text + "\n\n" # Append result directly
output += "="*40 + "\nGeneration complete (check results above for errors)."
return output
# Helper function for the Gradio UI to generate prompts using the real backend
def generate_prompts_ui(
num_prompts: int,
model: str,
temperature: float, # Add settings
top_p: float,
max_tokens: int
) -> str:
"""UI Wrapper to call the generate_prompts backend and format for Textbox."""
# Handle optional settings
temp_val = temperature if temperature > 0 else None
top_p_val = top_p if 0 < top_p <= 1 else None
# Use a specific max_tokens for prompt generation or pass from UI? Let's pass from UI
max_tokens_val = max_tokens if max_tokens > 0 else 200 # Set a default if UI value is 0
if not model:
return "Error: Please select a model for prompt generation."
if num_prompts <= 0:
return "Error: Number of prompts to generate must be positive."
if num_prompts > 50:
return "Error: Cannot generate more than 50 prompts at a time."
print(f"Generating prompts with settings: Temp={temp_val}, Top-P={top_p_val}, MaxTokens={max_tokens_val}") # Debug print
try:
# Call the actual function from synthgen.py, passing settings
prompts_list = generate_prompts(
num_prompts,
model,
temperature=temp_val,
top_p=top_p_val,
max_tokens=max_tokens_val
)
return "\n".join(prompts_list)
except ValueError as e:
# Catch errors raised by generate_prompts (e.g., API errors, parsing errors)
return f"Error generating prompts: {e}"
except Exception as e:
# Catch any other unexpected errors
print(f"Unexpected error in generate_prompts_ui: {e}")
return f"An unexpected error occurred: {e}"
# --- Modified Generation Wrappers ---
# Wrapper for text generation + JSON preparation - RETURNS TUPLE
def run_generation_and_prepare_json(
prompt: str,
model: str,
num_samples: int,
temperature: float,
top_p: float,
max_tokens: int
) -> Tuple[gr.update, gr.update]: # Return type hint (optional)
"""Generates text samples and prepares a JSON file for download."""
# Handle optional settings
temp_val = temperature if temperature > 0 else None
top_p_val = top_p if 0 < top_p <= 1 else None
max_tokens_val = max_tokens if max_tokens > 0 else None
# Handle errors by returning updates for both outputs in a tuple
if not prompt:
return (gr.update(value="Error: Please enter a prompt."), gr.update(value=None))
if num_samples <= 0:
return (gr.update(value="Error: Number of samples must be positive."), gr.update(value=None))
output_str = f"Generating {num_samples} samples using model '{model}'...\n"
output_str += f"(Settings: Temp={temp_val}, Top-P={top_p_val}, MaxTokens={max_tokens_val})\n"
output_str += "="*20 + "\n\n"
results_list = []
for i in range(num_samples):
generated_text = generate_synthetic_text(
prompt, model, temperature=temp_val, top_p=top_p_val, max_tokens=max_tokens_val
)
output_str += f"--- Sample {i+1} ---\n"
output_str += generated_text + "\n\n"
if not generated_text.startswith("Error:"):
results_list.append(generated_text)
output_str += "="*20 + "\nGeneration complete (check results above for errors)."
json_filepath = create_json_file(results_list, "text_samples.json")
# Return tuple of updates in the order of outputs list
return (gr.update(value=output_str), gr.update(value=json_filepath))
# Wrapper for conversation generation + JSON preparation - RETURNS TUPLE
def run_conversation_generation_and_prepare_json(
system_prompts_text: str,
model: str,
num_turns: int,
temperature: float,
top_p: float,
max_tokens: int
) -> Tuple[gr.update, gr.update]: # Return type hint (optional)
"""Generates conversations and prepares a JSON file for download."""
temp_val = temperature if temperature > 0 else None
top_p_val = top_p if 0 < top_p <= 1 else None
max_tokens_val = max_tokens if max_tokens > 0 else None
# Handle errors by returning updates for both outputs in a tuple
if not system_prompts_text:
return (gr.update(value="Error: Please enter or generate at least one system prompt/topic."), gr.update(value=None))
if num_turns <= 0:
return (gr.update(value="Error: Number of turns must be positive."), gr.update(value=None))
prompts = [p.strip() for p in system_prompts_text.strip().split('\n') if p.strip()]
if not prompts:
return (gr.update(value="Error: No valid prompts found in the input."), gr.update(value=None))
output_str = f"Generating {len(prompts)} conversations ({num_turns} turns each) using model '{model}'...\n"
output_str += f"(Settings: Temp={temp_val}, Top-P={top_p_val}, MaxTokens={max_tokens_val})\n"
output_str += "="*40 + "\n\n"
results_list_structured = []
for i, prompt in enumerate(prompts):
conversation_text = generate_synthetic_conversation(
prompt, model, num_turns, temperature=temp_val, top_p=top_p_val, max_tokens=max_tokens_val
)
output_str += f"--- Conversation {i+1}/{len(prompts)} ---\n"
output_str += conversation_text + "\n\n"
# --- Parsing Logic ---
core_conversation_text = conversation_text
if conversation_text.startswith("Error:"): core_conversation_text = None
elif "\n\n" in conversation_text:
parts = conversation_text.split("\n\n", 1)
core_conversation_text = parts[1] if len(parts) > 1 else conversation_text
if core_conversation_text:
messages = parse_conversation_string(core_conversation_text)
if messages: results_list_structured.append({"prompt": prompt, "messages": messages})
else: results_list_structured.append({"prompt": prompt, "error": "Failed to parse structure.", "raw_text": core_conversation_text})
elif conversation_text.startswith("Error:"): results_list_structured.append({"prompt": prompt, "error": conversation_text})
else: results_list_structured.append({"prompt": prompt, "error": "Could not extract content.", "raw_text": conversation_text})
# --- End Parsing Logic ---
output_str += "="*40 + "\nGeneration complete (check results above for errors)."
json_filepath = create_json_file(results_list_structured, "conversations.json")
# Return tuple of updates in the order of outputs list
return (gr.update(value=output_str), gr.update(value=json_filepath))
# Define content_type_labels globally for use in UI and wrapper functions
content_type_labels = {
"Corpus Snippets": "# Snippets",
"Short Story": "Approx Words",
"Article": "Approx Words"
}
content_type_defaults = {
"Corpus Snippets": 5,
"Short Story": 1000, # Match new backend default
"Article": 1500 # Match new backend default
}
# Wrapper for Corpus/Content Generation
def run_corpus_generation_and_prepare_file(
topic: str,
content_type: str,
length_param: int,
model: str,
temperature: float,
top_p: float,
max_tokens: int
) -> Tuple[gr.update, gr.update]:
"""Generates corpus/story/article content and prepares a file for download."""
temp_val = temperature if temperature > 0 else None
top_p_val = top_p if 0 < top_p <= 1 else None
max_tokens_val = max_tokens if max_tokens > 0 else None
# Use the global dictionary for error messages
label_for_error = content_type_labels.get(content_type, 'Length Param')
if not topic: return (gr.update(value="Error: Please enter a topic."), gr.update(value=None))
if not content_type: return (gr.update(value="Error: Please select a content type."), gr.update(value=None))
if length_param <= 0: return (gr.update(value=f"Error: Please enter a positive value for '{label_for_error}'."), gr.update(value=None))
print(f"Generating {content_type} about '{topic}'...")
output_str = f"Generating {content_type} about '{topic}' using model '{model}'...\n"
output_str += f"(Settings: Temp={temp_val}, Top-P={top_p_val}, MaxTokens={max_tokens_val})\n" + "="*40 + "\n\n"
generated_content = generate_corpus_content(
topic=topic, content_type=content_type, length_param=length_param, model=model,
temperature=temp_val, top_p=top_p_val, max_tokens=max_tokens_val
)
output_str += generated_content
file_path = None
if not generated_content.startswith("Error:"):
core_content = generated_content
if "\n\n" in generated_content: parts = generated_content.split("\n\n", 1); core_content = parts[1] if len(parts) > 1 else generated_content
if content_type == "Corpus Snippets":
snippets = [s.strip() for s in core_content.split('---') if s.strip()]
if not snippets: snippets = [s.strip() for s in core_content.split('\n\n') if s.strip()]
corpus_data = {"topic": topic, "snippets": snippets}
file_path = create_json_file(corpus_data, f"{topic}_corpus.json")
else:
file_path = create_text_file(core_content, f"{topic}_{content_type.replace(' ','_')}.txt")
return (gr.update(value=output_str), gr.update(value=file_path))
# NEW function to update the length parameter label and default value
def update_length_param_ui(content_type: str) -> gr.update:
"""Updates the label and default value of the length parameter input."""
new_label = content_type_labels.get(content_type, "Length Param")
new_value = content_type_defaults.get(content_type, 5) # Default to 5 if type unknown
return gr.update(label=new_label, value=new_value)
# --- Generation Wrappers ---
# ... (generate_prompts_ui, run_generation_and_prepare_json, run_conversation_generation_and_prepare_json remain the same) ...
# NEW UI Wrapper for generating TOPICS
def generate_topics_ui(
num_topics: int,
model: str,
temperature: float,
top_p: float,
max_tokens: int
) -> str:
"""UI Wrapper to generate diverse topics using the AI."""
temp_val = temperature if temperature > 0 else None
top_p_val = top_p if 0 < top_p <= 1 else None
max_tokens_val = max_tokens if max_tokens > 0 else 150 # Limit token for topic list
if not model:
return "Error: Please select a model for topic generation."
if num_topics <= 0:
return "Error: Number of topics to generate must be positive."
if num_topics > 50: # Keep limit reasonable
return "Error: Cannot generate more than 50 topics at a time."
print(f"Generating {num_topics} topics with settings: Temp={temp_val}, Top-P={top_p_val}, MaxTokens={max_tokens_val}")
# Instruction focused on generating topics
instruction = (
f"Generate exactly {num_topics} diverse and interesting topics suitable for generating content like articles, stories, or corpus snippets. "
f"Each topic should be concise (a few words to a short phrase). "
f"Present each topic on a new line, with no other introductory or concluding text or numbering."
f"\n\nExamples:\n"
f"The future of renewable energy\n"
f"The history of the Silk Road\n"
f"The impact of social media on mental health"
)
system_msg = "You are an expert topic generator. Follow the user's instructions precisely."
try:
# Use the core text generation function
generated_text = generate_synthetic_text(
instruction,
model,
system_message=system_msg,
temperature=temp_val,
top_p=top_p_val,
max_tokens=max_tokens_val
)
if generated_text.startswith("Error:"):
raise ValueError(generated_text) # Propagate error
# Split into lines and clean up
topics_list = [t.strip() for t in generated_text.strip().split('\n') if t.strip()]
if not topics_list:
print(f"Warning: Failed to parse topics from generated text. Raw text:\n{generated_text}")
raise ValueError("AI failed to generate topics in the expected format.")
# Return newline-separated string for the Textbox
return "\n".join(topics_list[:num_topics]) # Truncate if needed
except ValueError as e:
return f"Error generating topics: {e}"
except Exception as e:
print(f"Unexpected error in generate_topics_ui: {e}")
return f"An unexpected error occurred: {e}"
# Modified Wrapper for Bulk Corpus/Content Generation
def run_bulk_content_generation_and_prepare_json(
topics_text: str, # Renamed from topic
content_type: str,
length_param: int,
model: str,
temperature: float,
top_p: float,
max_tokens: int
) -> Tuple[gr.update, gr.update]:
"""Generates content for multiple topics and prepares a JSON file."""
temp_val = temperature if temperature > 0 else None
top_p_val = top_p if 0 < top_p <= 1 else None
max_tokens_val = max_tokens if max_tokens > 0 else None
# --- Input Validation ---
if not topics_text:
return (gr.update(value="Error: Please enter or generate at least one topic."), gr.update(value=None))
if not content_type:
return (gr.update(value="Error: Please select a content type."), gr.update(value=None))
topics = [t.strip() for t in topics_text.strip().split('\n') if t.strip()]
if not topics:
return (gr.update(value="Error: No valid topics found in the input."), gr.update(value=None))
label_for_error = content_type_labels.get(content_type, 'Length Param')
if length_param <= 0:
return (gr.update(value=f"Error: Please enter a positive value for '{label_for_error}'."), gr.update(value=None))
# --- End Validation ---
output_str = f"Generating {content_type} for {len(topics)} topics using model '{model}'...\n"
output_str += f"(Settings: Temp={temp_val}, Top-P={top_p_val}, MaxTokens={max_tokens_val})\n" + "="*40 + "\n\n"
bulk_results = [] # Store results for JSON
# --- Loop through topics ---
for i, topic in enumerate(topics):
print(f"Generating {content_type} for topic {i+1}/{len(topics)}: '{topic}'...")
output_str += f"--- Topic {i+1}/{len(topics)}: '{topic}' ---\n"
generated_content_full = generate_corpus_content( # Returns string including title/error
topic=topic, content_type=content_type, length_param=length_param, model=model,
temperature=temp_val, top_p=top_p_val, max_tokens=max_tokens_val
)
output_str += generated_content_full + "\n\n" # Add full result to textbox
# --- Prepare structured result for JSON ---
result_entry = {"topic": topic, "content_type": content_type}
if generated_content_full.startswith("Error:"):
result_entry["status"] = "error"
result_entry["error_message"] = generated_content_full
result_entry["content"] = None
else:
result_entry["status"] = "success"
result_entry["error_message"] = None
# Extract core content (remove potential title added by backend)
core_content = generated_content_full
if "\n\n" in generated_content_full:
parts = generated_content_full.split("\n\n", 1)
core_content = parts[1] if len(parts) > 1 else generated_content_full
if content_type == "Corpus Snippets":
snippets = [s.strip() for s in core_content.split('---') if s.strip()]
if not snippets: snippets = [s.strip() for s in core_content.split('\n\n') if s.strip()]
result_entry["content"] = snippets # Store list for corpus
else:
result_entry["content"] = core_content # Store string for story/article
bulk_results.append(result_entry)
# --- End JSON preparation ---
# --- Finalize ---
output_str += "="*40 + f"\nBulk generation complete for {len(topics)} topics."
json_filepath = create_json_file(bulk_results, f"{content_type.replace(' ','_')}_bulk_results.json")
return (gr.update(value=output_str), gr.update(value=json_filepath))
# --- Gradio Interface Definition ---
with gr.Blocks() as demo:
gr.Markdown("# Synthetic Data Generator using OpenRouter")
gr.Markdown(
"Generate synthetic text samples, conversations, or other content using various models"
)
# Removed the api_key_loaded check and warning Markdown
# Define model choices (can be shared or specific per tab)
# Consider fetching these dynamically from OpenRouter if possible in the future
model_choices = [
"deepseek/deepseek-chat-v3-0324:free", # Example free model
"meta-llama/llama-3.3-70b-instruct:free",
"deepseek/deepseek-r1:free",
"google/gemini-2.5-pro-exp-03-25:free",
"qwen/qwen-2.5-72b-instruct:free",
"featherless/qwerky-72b:free",
"google/gemma-3-27b-it:free",
"mistralai/mistral-small-24b-instruct-2501:free",
"deepseek/deepseek-r1-distill-llama-70b:free",
"sophosympatheia/rogue-rose-103b-v0.2:free",
"nvidia/llama-3.1-nemotron-70b-instruct:free",
"microsoft/phi-3-medium-128k-instruct:free",
"undi95/toppy-m-7b:free",
"huggingfaceh4/zephyr-7b-beta:free",
"openrouter/quasar-alpha"
# Add more model IDs as needed
]
default_model = model_choices[0] if model_choices else None
# --- Shared Model Settings ---
# Use an Accordion for less clutter
with gr.Accordion("Model Settings (Optional)", open=False):
# Set reasonable ranges and defaults. Use 0 for Max Tokens/Top-P to signify 'None'/API default.
temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.1, label="Temperature", info="Controls randomness. Higher values are more creative, lower are more deterministic. 0 means use API default.")
top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Top-P (Nucleus Sampling)", info="Considers only tokens with cumulative probability mass >= top_p. 0 means use API default.")
max_tokens_slider = gr.Number(value=0, minimum=0, maximum=8192, step=64, label="Max Tokens", info="Maximum number of tokens to generate in the completion. 0 means use API default.")
with gr.Tabs():
with gr.TabItem("Text Generation"):
with gr.Row():
prompt_input_text = gr.Textbox(label="Prompt", placeholder="Enter your prompt here (e.g., Generate a short product description for a sci-fi gadget)", lines=3)
with gr.Row():
model_input_text = gr.Dropdown(
label="OpenRouter Model ID",
choices=model_choices,
value=default_model
)
num_samples_input_text = gr.Number(label="Number of Samples", value=3, minimum=1, maximum=20, step=1)
generate_button_text = gr.Button("Generate Text Samples")
output_text = gr.Textbox(label="Generated Samples", lines=15, show_copy_button=True)
# Add File component for download
download_file_text = gr.File(label="Download Samples as JSON")
generate_button_text.click(
fn=run_generation_and_prepare_json,
inputs=[
prompt_input_text, model_input_text, num_samples_input_text,
temperature_slider, top_p_slider, max_tokens_slider # Add settings inputs
],
outputs=[output_text, download_file_text]
)
with gr.TabItem("Conversation Generation"):
gr.Markdown("Enter one system prompt/topic per line below, or use the 'Generate Prompts' button.")
with gr.Row():
# Textbox for multiple prompts
prompt_input_conv = gr.Textbox(
label="Prompts (one per line)",
lines=5, # Make it multi-line
placeholder="Enter prompts here, one per line...\ne.g., Act as a pirate discussing treasure maps.\nDiscuss the future of space travel."
)
with gr.Row():
# Input for number of prompts to generate
num_prompts_input_conv = gr.Number(label="Number of Prompts to Generate", value=5, minimum=1, maximum=20, step=1) # Keep max reasonable
# Button to trigger AI prompt generation
generate_prompts_button = gr.Button("Generate Prompts using AI")
with gr.Row():
# Model selection for conversation generation AND prompt generation
model_input_conv = gr.Dropdown(
label="OpenRouter Model ID (for generation)",
choices=model_choices,
value=default_model
)
with gr.Row():
# Input for number of turns per conversation
num_turns_input_conv = gr.Number(label="Number of Turns per Conversation (approx)", value=5, minimum=1, maximum=20, step=1) # Keep max reasonable
# Button to generate the conversations based on the prompts in the Textbox
generate_conversations_button = gr.Button("Generate Conversations")
output_conv = gr.Textbox(label="Generated Conversations", lines=15, show_copy_button=True)
# Add File component for download
download_file_conv = gr.File(label="Download Conversations as JSON")
# Connect the "Generate Prompts" button to the UI wrapper
generate_prompts_button.click(
fn=generate_prompts_ui, # Use the wrapper that calls the real function
inputs=[
num_prompts_input_conv, model_input_conv,
temperature_slider, top_p_slider, max_tokens_slider # Add settings inputs
],
outputs=prompt_input_conv
)
# Connect the "Generate Conversations" button to the real function wrapper
generate_conversations_button.click(
fn=run_conversation_generation_and_prepare_json, # Use the wrapper that calls the real function
inputs=[
prompt_input_conv, model_input_conv, num_turns_input_conv,
temperature_slider, top_p_slider, max_tokens_slider # Add settings inputs
],
outputs=[output_conv, download_file_conv] # Output to both Textbox and File
)
# --- Content Generation Tab (Modified for Bulk) ---
with gr.TabItem("Bulk Content Generation"):
output_content = gr.Textbox(label="Generated Content (Log)", lines=15, show_copy_button=True)
# Output is now always JSON
download_file_content = gr.File(label="Download Results as JSON")
gr.Markdown("Enter one topic per line below, or use the 'Generate Topics' button.")
with gr.Row():
# Changed to multi-line Textbox
topic_input_content = gr.Textbox(
label="Topics (one per line)",
lines=5,
placeholder="Enter topics here, one per line...\ne.g., The future of renewable energy\nThe history of the Silk Road"
)
# --- Topic Generation ---
with gr.Accordion("Topic Generation Options", open=False):
with gr.Row():
num_topics_input = gr.Number(label="# Topics to Generate", value=5, minimum=1, maximum=50, step=1)
# Use shared model selector below and settings
generate_topics_button = gr.Button("Generate Topics using AI")
# --- Generation Settings ---
with gr.Row():
content_type_choices = list(content_type_labels.keys())
content_type_input = gr.Dropdown(
label="Content Type", choices=content_type_choices, value=content_type_choices[0]
)
default_length_label = content_type_labels[content_type_choices[0]]
default_length_value = content_type_defaults[content_type_choices[0]]
length_param_input = gr.Number(
label=default_length_label, value=default_length_value, minimum=1, step=1
)
with gr.Row():
model_input_content = gr.Dropdown(label="Model", choices=model_choices, value=default_model)
# Button to trigger bulk generation
generate_content_button = gr.Button("Generate Bulk Content")
# --- Event Listeners ---
# Listener to update length param UI
content_type_input.change(
fn=update_length_param_ui,
inputs=content_type_input,
outputs=length_param_input
)
# Listener for topic generation button
generate_topics_button.click(
fn=generate_topics_ui,
inputs=[ # Pass necessary inputs for topic generation
num_topics_input, model_input_content, # Use this tab's model selector
temperature_slider, top_p_slider, max_tokens_slider
],
outputs=topic_input_content # Output generated topics to the textbox
)
# Listener for main generation button
generate_content_button.click(
fn=run_bulk_content_generation_and_prepare_json, # Use the new bulk wrapper
inputs=[
topic_input_content, content_type_input, length_param_input,
model_input_content,
temperature_slider, top_p_slider, max_tokens_slider
],
outputs=[output_content, download_file_content]
)
# Launch the Gradio app
if __name__ == "__main__":
print("Launching Gradio App...")
print("Make sure the OPENROUTER_API_KEY environment variable is set.")
# Use share=True for temporary public link if running locally and need to test
demo.launch() # share=True
|