Lord-Raven commited on
Commit
de1ced9
·
1 Parent(s): a3a5d99

Messing with configuration.

Browse files
Files changed (1) hide show
  1. app.py +16 -15
app.py CHANGED
@@ -2,8 +2,8 @@ import spaces
2
  import gradio
3
  import json
4
  import torch
5
- from transformers import AutoTokenizer
6
  from optimum.onnxruntime import ORTModelForSequenceClassification
 
7
  from optimum.pipelines import pipeline
8
  from fastapi import FastAPI
9
  from fastapi.middleware.cors import CORSMiddleware
@@ -29,22 +29,22 @@ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
29
  # "Xenova/deBERTa-v3-base-mnli" "MoritzLaurer/DeBERTa-v3-base-mnli" Still a bit slow and not great answers
30
  # "xenova/nli-deberta-v3-small" "cross-encoder/nli-deberta-v3-small" Was using this for a good while and it was...okay
31
 
32
- model_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
33
- file_name = "onnx/model.onnx"
34
- tokenizer_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
35
 
36
- model = ORTModelForSequenceClassification.from_pretrained(model_name, export=True, provider="CUDAExecutionProvider")
37
- tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, model_max_length=512)
38
 
39
- # model = ORTModelForSequenceClassification.from_pretrained(
40
- # "distilbert-base-uncased-finetuned-sst-2-english",
41
- # export=True,
42
- # provider="CUDAExecutionProvider",
43
- # )
44
 
45
- # tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
46
 
47
- classifier = pipeline(task="zero-shot-classification", model=model, tokenizer=tokenizer, device="cuda:0")
48
 
49
  def classify(data_string, request: gradio.Request):
50
  if request:
@@ -56,9 +56,10 @@ def classify(data_string, request: gradio.Request):
56
  # else:
57
  return zero_shot_classification(data)
58
 
59
- @spaces.GPU()
60
  def zero_shot_classification(data):
61
- results = classifier(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label'])
 
62
  response_string = json.dumps(results)
63
  return response_string
64
 
 
2
  import gradio
3
  import json
4
  import torch
 
5
  from optimum.onnxruntime import ORTModelForSequenceClassification
6
+ from transformers import AutoTokenizer
7
  from optimum.pipelines import pipeline
8
  from fastapi import FastAPI
9
  from fastapi.middleware.cors import CORSMiddleware
 
29
  # "Xenova/deBERTa-v3-base-mnli" "MoritzLaurer/DeBERTa-v3-base-mnli" Still a bit slow and not great answers
30
  # "xenova/nli-deberta-v3-small" "cross-encoder/nli-deberta-v3-small" Was using this for a good while and it was...okay
31
 
32
+ # model_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
33
+ # file_name = "onnx/model.onnx"
34
+ # tokenizer_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
35
 
36
+ # model = ORTModelForSequenceClassification.from_pretrained(model_name, export=True, provider="CUDAExecutionProvider")
37
+ # tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, model_max_length=512)
38
 
39
+ model = ORTModelForSequenceClassification.from_pretrained(
40
+ "philschmid/tiny-bert-sst2-distilled",
41
+ export=True,
42
+ provider="CUDAExecutionProvider",
43
+ )
44
 
45
+ tokenizer = AutoTokenizer.from_pretrained("philschmid/tiny-bert-sst2-distilled")
46
 
47
+ # classifier = pipeline(task="zero-shot-classification", model=model, tokenizer=tokenizer, device="cuda:0")
48
 
49
  def classify(data_string, request: gradio.Request):
50
  if request:
 
56
  # else:
57
  return zero_shot_classification(data)
58
 
59
+ # @spaces.GPU()
60
  def zero_shot_classification(data):
61
+ results = []
62
+ # classifier(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label'])
63
  response_string = json.dumps(results)
64
  return response_string
65