Spaces:
Running
on
Zero
Running
on
Zero
Lord-Raven
commited on
Commit
·
442d668
1
Parent(s):
1f33968
Messing with configuration.
Browse files
app.py
CHANGED
@@ -32,11 +32,20 @@ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
|
32 |
# "Xenova/distilbert-base-uncased-mnli" "typeform/distilbert-base-uncased-mnli" Bad answers
|
33 |
# "Xenova/deBERTa-v3-base-mnli" "MoritzLaurer/DeBERTa-v3-base-mnli" Still a bit slow and not great answers
|
34 |
# "xenova/nli-deberta-v3-small" "cross-encoder/nli-deberta-v3-small" Was using this for a good while and it was...okay
|
35 |
-
model_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
|
36 |
-
file_name = "onnx/model.onnx"
|
37 |
-
tokenizer_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
|
38 |
-
model = ORTModelForSequenceClassification.from_pretrained(model_name, file_name=file_name, provider="CUDAExecutionProvider")
|
39 |
-
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, model_max_length=512)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
classifier = pipeline(task="zero-shot-classification", model=model, tokenizer=tokenizer, device="cuda:0")
|
41 |
|
42 |
def classify(data_string, request: gradio.Request):
|
|
|
32 |
# "Xenova/distilbert-base-uncased-mnli" "typeform/distilbert-base-uncased-mnli" Bad answers
|
33 |
# "Xenova/deBERTa-v3-base-mnli" "MoritzLaurer/DeBERTa-v3-base-mnli" Still a bit slow and not great answers
|
34 |
# "xenova/nli-deberta-v3-small" "cross-encoder/nli-deberta-v3-small" Was using this for a good while and it was...okay
|
35 |
+
# model_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
|
36 |
+
# file_name = "onnx/model.onnx"
|
37 |
+
# tokenizer_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
|
38 |
+
# model = ORTModelForSequenceClassification.from_pretrained(model_name, file_name=file_name, provider="CUDAExecutionProvider")
|
39 |
+
# tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, model_max_length=512)
|
40 |
+
|
41 |
+
model = ORTModelForSequenceClassification.from_pretrained(
|
42 |
+
"philschmid/tiny-bert-sst2-distilled",
|
43 |
+
export=True,
|
44 |
+
provider="CUDAExecutionProvider",
|
45 |
+
)
|
46 |
+
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained("philschmid/tiny-bert-sst2-distilled")
|
48 |
+
|
49 |
classifier = pipeline(task="zero-shot-classification", model=model, tokenizer=tokenizer, device="cuda:0")
|
50 |
|
51 |
def classify(data_string, request: gradio.Request):
|