Lord-Raven commited on
Commit
3f34143
·
1 Parent(s): 02f2915

Messing with configuration.

Browse files
Files changed (1) hide show
  1. app.py +16 -16
app.py CHANGED
@@ -5,7 +5,7 @@ import torch
5
  import onnxruntime
6
  from optimum.onnxruntime import ORTModelForSequenceClassification
7
  from transformers import AutoTokenizer
8
- from optimum.pipelines import pipeline
9
  from fastapi import FastAPI
10
  from fastapi.middleware.cors import CORSMiddleware
11
 
@@ -30,9 +30,9 @@ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
30
  # "Xenova/deBERTa-v3-base-mnli" "MoritzLaurer/DeBERTa-v3-base-mnli" Still a bit slow and not great answers
31
  # "xenova/nli-deberta-v3-small" "cross-encoder/nli-deberta-v3-small" Was using this for a good while and it was...okay
32
 
33
- # model_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
34
  # file_name = "onnx/model.onnx"
35
- # tokenizer_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
36
 
37
  # model = ORTModelForSequenceClassification.from_pretrained(model_name, export=True, provider="CUDAExecutionProvider")
38
  # tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, model_max_length=512)
@@ -40,20 +40,21 @@ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
40
  session_options = onnxruntime.SessionOptions()
41
  session_options.log_severity_level = 0
42
 
43
- print(f"ORTModelForSequenceClassification.from_pretrained")
44
- model = ORTModelForSequenceClassification.from_pretrained(
45
- "distilbert-base-uncased-finetuned-sst-2-english",
46
- export=True,
47
- provider="CUDAExecutionProvider",
48
- session_options=session_options
49
- )
50
- print(f"AutoTokenizer.from_pretrained")
51
- tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
52
 
53
- # classifier = pipeline(task="zero-shot-classification", model=model, tokenizer=tokenizer, device="cuda:0")
 
54
 
55
  print(f"Testing 1")
56
- @spaces.GPU()
57
  def classify(data_string, request: gradio.Request):
58
  if request:
59
  if request.headers["origin"] not in ["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win", "https://crunchatize-77a78ffcc6a6.c5v4v4jx6pq5.win", "https://crunchatize-2-2b4f5b1479a6.c5v4v4jx6pq5.win", "https://tamabotchi-2dba63df3bf1.c5v4v4jx6pq5.win", "https://ravenok-statosphere-backend.hf.space", "https://lord-raven.github.io"]:
@@ -66,8 +67,7 @@ def classify(data_string, request: gradio.Request):
66
 
67
  print(f"Testing 2")
68
  def zero_shot_classification(data):
69
- results = []
70
- # classifier(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label'])
71
  response_string = json.dumps(results)
72
  return response_string
73
 
 
5
  import onnxruntime
6
  from optimum.onnxruntime import ORTModelForSequenceClassification
7
  from transformers import AutoTokenizer
8
+ from transformers import pipeline
9
  from fastapi import FastAPI
10
  from fastapi.middleware.cors import CORSMiddleware
11
 
 
30
  # "Xenova/deBERTa-v3-base-mnli" "MoritzLaurer/DeBERTa-v3-base-mnli" Still a bit slow and not great answers
31
  # "xenova/nli-deberta-v3-small" "cross-encoder/nli-deberta-v3-small" Was using this for a good while and it was...okay
32
 
33
+ model_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
34
  # file_name = "onnx/model.onnx"
35
+ tokenizer_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
36
 
37
  # model = ORTModelForSequenceClassification.from_pretrained(model_name, export=True, provider="CUDAExecutionProvider")
38
  # tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, model_max_length=512)
 
40
  session_options = onnxruntime.SessionOptions()
41
  session_options.log_severity_level = 0
42
 
43
+ # print(f"ORTModelForSequenceClassification.from_pretrained")
44
+ # model = ORTModelForSequenceClassification.from_pretrained(
45
+ # "distilbert-base-uncased-finetuned-sst-2-english",
46
+ # export=True,
47
+ # provider="CUDAExecutionProvider",
48
+ # session_options=session_options
49
+ # )
50
+ # print(f"AutoTokenizer.from_pretrained")
51
+ # tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
52
 
53
+ print(f"pipeline")
54
+ classifier = pipeline(task="zero-shot-classification", model=model_name, tokenizer=tokenizer_name, device="cuda:0")
55
 
56
  print(f"Testing 1")
57
+ @spaces.GPU
58
  def classify(data_string, request: gradio.Request):
59
  if request:
60
  if request.headers["origin"] not in ["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win", "https://crunchatize-77a78ffcc6a6.c5v4v4jx6pq5.win", "https://crunchatize-2-2b4f5b1479a6.c5v4v4jx6pq5.win", "https://tamabotchi-2dba63df3bf1.c5v4v4jx6pq5.win", "https://ravenok-statosphere-backend.hf.space", "https://lord-raven.github.io"]:
 
67
 
68
  print(f"Testing 2")
69
  def zero_shot_classification(data):
70
+ results = classifier(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label'])
 
71
  response_string = json.dumps(results)
72
  return response_string
73