Update knowledge_base.py
Browse files- knowledge_base.py +4 -8
knowledge_base.py
CHANGED
@@ -32,20 +32,16 @@ def create_faiss_index(texts):
|
|
32 |
return index, texts
|
33 |
|
34 |
# Search the FAISS index
|
35 |
-
def search_faiss(faiss_index, stored_texts, query, top_k=3):
|
36 |
"""
|
37 |
-
Search
|
38 |
"""
|
39 |
-
|
40 |
-
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
41 |
|
42 |
-
|
43 |
query_embedding = model.encode([query])
|
44 |
|
45 |
-
# Search the FAISS index
|
46 |
distances, indices = faiss_index.search(query_embedding, top_k)
|
47 |
-
|
48 |
-
# Retrieve the corresponding texts
|
49 |
results = [stored_texts[i] for i in indices[0] if i < len(stored_texts)]
|
50 |
|
51 |
return results
|
|
|
32 |
return index, texts
|
33 |
|
34 |
# Search the FAISS index
|
35 |
+
def search_faiss(faiss_index, stored_texts, query, top_k=3):
|
36 |
"""
|
37 |
+
Search FAISS for the most relevant texts.
|
38 |
"""
|
39 |
+
from sentence_transformers import SentenceTransformer
|
|
|
40 |
|
41 |
+
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
42 |
query_embedding = model.encode([query])
|
43 |
|
|
|
44 |
distances, indices = faiss_index.search(query_embedding, top_k)
|
|
|
|
|
45 |
results = [stored_texts[i] for i in indices[0] if i < len(stored_texts)]
|
46 |
|
47 |
return results
|