Rajesh3338 commited on
Commit
4b0fbeb
·
verified ·
1 Parent(s): 6e5b6dc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -1
app.py CHANGED
@@ -1,4 +1,6 @@
1
  import gradio as gr
 
 
2
  from langchain.document_loaders import TextLoader
3
  from langchain.text_splitter import RecursiveCharacterTextSplitter
4
  from langchain.embeddings import HuggingFaceEmbeddings
@@ -39,29 +41,33 @@ qa_chain = RetrievalQA.from_chain_type(
39
  return_source_documents=False
40
  )
41
 
 
42
  def preprocess_query(query):
43
  if "script" in query or "code" in query.lower():
44
  return f"Write a CPSL script: {query}"
45
  return query
46
 
 
47
  def clean_response(response):
48
  result = response.get("result", "")
49
  if "Answer:" in result:
50
  return result.split("Answer:")[1].strip()
51
  return result.strip()
52
 
 
53
  def chatbot_response(user_input):
54
  processed_query = preprocess_query(user_input)
55
  raw_response = qa_chain.invoke({"query": processed_query})
56
  return clean_response(raw_response)
57
 
58
- # Gradio interface
59
  with gr.Blocks() as demo:
60
  gr.Markdown("# CPSL Chatbot")
61
  chat_history = gr.Chatbot()
62
  user_input = gr.Textbox(label="Your Message:")
63
  send_button = gr.Button("Send")
64
 
 
65
  def interact(user_message, history):
66
  bot_reply = chatbot_response(user_message)
67
  history.append((user_message, bot_reply))
 
1
  import gradio as gr
2
+ import spaces
3
+ import torch
4
  from langchain.document_loaders import TextLoader
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
6
  from langchain.embeddings import HuggingFaceEmbeddings
 
41
  return_source_documents=False
42
  )
43
 
44
+ @spaces.GPU
45
  def preprocess_query(query):
46
  if "script" in query or "code" in query.lower():
47
  return f"Write a CPSL script: {query}"
48
  return query
49
 
50
+ @spaces.GPU
51
  def clean_response(response):
52
  result = response.get("result", "")
53
  if "Answer:" in result:
54
  return result.split("Answer:")[1].strip()
55
  return result.strip()
56
 
57
+ @spaces.GPU
58
  def chatbot_response(user_input):
59
  processed_query = preprocess_query(user_input)
60
  raw_response = qa_chain.invoke({"query": processed_query})
61
  return clean_response(raw_response)
62
 
63
+ @spaces.GPU
64
  with gr.Blocks() as demo:
65
  gr.Markdown("# CPSL Chatbot")
66
  chat_history = gr.Chatbot()
67
  user_input = gr.Textbox(label="Your Message:")
68
  send_button = gr.Button("Send")
69
 
70
+ @spaces.GPU
71
  def interact(user_message, history):
72
  bot_reply = chatbot_response(user_message)
73
  history.append((user_message, bot_reply))