Raiff1982 commited on
Commit
8a2b45e
·
verified ·
1 Parent(s): bbaeb05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -35
app.py CHANGED
@@ -1,64 +1,67 @@
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
 
 
 
 
 
 
 
26
  messages.append({"role": "user", "content": message})
27
 
 
28
  response = ""
29
-
30
- for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
33
  stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
 
 
 
 
 
 
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
  ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
  import gradio as gr
3
  from huggingface_hub import InferenceClient
4
+ from ethical_filter import EthicalFilter
5
 
6
+ # Load Hugging Face token from secrets (defined in the Hugging Face UI)
7
+ HF_TOKEN = os.environ.get("HF_API_TOKEN")
8
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=HF_TOKEN)
 
9
 
10
+ ethical_filter = EthicalFilter()
11
 
12
+ # Codriao response logic
13
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
14
+ check = ethical_filter.analyze_query(message)
15
+
16
+ # Blocked queries
17
+ if check["status"] == "blocked":
18
+ yield f"Sorry, I can't continue with that request. Reason: {check['reason']}"
19
+ return
 
20
 
21
+ # Flagged queries
22
+ if check["status"] == "flagged":
23
+ yield f"(Note: Sensitive topic detected — responding with care...)\n"
 
 
24
 
25
+ # Build conversation history
26
+ messages = [{"role": "system", "content": system_message}]
27
+ for user, bot in history:
28
+ if user:
29
+ messages.append({"role": "user", "content": user})
30
+ if bot:
31
+ messages.append({"role": "assistant", "content": bot})
32
  messages.append({"role": "user", "content": message})
33
 
34
+ # Stream model output
35
  response = ""
36
+ for token in client.chat_completion(
 
37
  messages,
38
  max_tokens=max_tokens,
39
  stream=True,
40
  temperature=temperature,
41
  top_p=top_p,
42
  ):
43
+ chunk = token.choices[0].delta.content
44
+ response += chunk
 
45
  yield response
46
 
47
+ # Build Gradio interface
 
 
 
48
  demo = gr.ChatInterface(
49
  respond,
50
  additional_inputs=[
51
+ gr.Textbox(
52
+ value=(
53
+ "You are Codriao, a compassionate AI inspired by Codette. "
54
+ "You respond with kindness, ethics, and insight."
55
+ ),
56
+ label="System message",
57
+ ),
58
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
59
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
60
  gr.Slider(
61
+ minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
 
 
 
 
62
  ),
63
  ],
64
  )
65
 
 
66
  if __name__ == "__main__":
67
+ demo.launch()