codriao / HuggingFaceHelper.py
Raiff1982's picture
Rename HuggingFace_Helper.py to HuggingFaceHelper.py
a700b7b verified
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
import os
class HuggingFaceHelper:
def __init__(self, model_path="./merged_model", dataset_path=None):
self.model_path = model_path
self.dataset_path = dataset_path
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForCausalLM.from_pretrained(model_path).to(self.device)
def load_dataset(self):
if self.dataset_path:
dataset = load_dataset("json", data_files=self.dataset_path, split="train")
return dataset.map(self.tokenize_function, batched=True)
raise ValueError("Dataset path not provided.")
def tokenize_function(self, examples):
return self.tokenizer(examples["messages"], truncation=True, padding="max_length", max_length=512)
def fine_tune(self, output_dir="./fine_tuned_model", epochs=3, batch_size=4):
dataset = self.load_dataset()
training_args = TrainingArguments(
output_dir=output_dir,
evaluation_strategy="epoch",
save_strategy="epoch",
per_device_train_batch_size=batch_size,
num_train_epochs=epochs,
weight_decay=0.01,
push_to_hub=True,
hub_model_id="Raiff1982/codriao-finetuned"
)
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=dataset,
tokenizer=self.tokenizer,
)
trainer.train()
self.save_model(output_dir)
def save_model(self, output_dir):
self.model.save_pretrained(output_dir)
self.tokenizer.save_pretrained(output_dir)
print(f"✅ Model saved to {output_dir} and uploaded to Hugging Face Hub.")