Spaces:
Runtime error
Runtime error
import aiohttp | |
import json | |
import logging | |
import torch | |
import faiss | |
import numpy as np | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from typing import List, Dict, Any | |
from cryptography.fernet import Fernet | |
from jwt import encode, decode, ExpiredSignatureError | |
from datetime import datetime, timedelta | |
import pyttsx3 | |
import os | |
from components.multi_model_analyzer import MultiAgentSystem | |
from components.neuro_symbolic_engine import NeuroSymbolicEngine | |
from components.self_improving_ai import SelfImprovingAI | |
from modules.secure_memory_loader import load_secure_memory_module | |
from ethical_filter import EthicalFilter | |
from codette_openai_fallback import query_codette_with_fallback | |
from CodriaoCore.federated_learning import FederatedAI | |
from utils.database import Database | |
from utils.logger import logger | |
from codriao_tb_module import CodriaoHealthModule | |
from fail_safe import AIFailsafeSystem | |
from quarantine_engine import QuarantineEngine | |
from anomaly_score import AnomalyScorer | |
from ethics_core import EthicsCore | |
class AICoreAGIX: | |
def __init__(self, config_path: str = "config.json"): | |
self.ethical_filter = EthicalFilter() | |
self.config = self._load_config(config_path) | |
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) | |
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) | |
self.context_memory = self._initialize_vector_memory() | |
self.http_session = aiohttp.ClientSession() | |
self.database = Database() | |
self.multi_agent_system = MultiAgentSystem() | |
self.self_improving_ai = SelfImprovingAI() | |
self.neural_symbolic_engine = NeuroSymbolicEngine() | |
self.federated_ai = FederatedAI() | |
self.failsafe_system = AIFailsafeSystem() | |
self.ethics_core = EthicsCore() | |
def engage_lockdown_mode(self, reason="Unspecified anomaly"): | |
timestamp = datetime.utcnow().isoformat() | |
self.lockdown_engaged = True | |
# Disable external systems | |
try: | |
self.http_session = None | |
if hasattr(self.federated_ai, "network_enabled"): | |
self.federated_ai.network_enabled = False | |
if hasattr(self.self_improving_ai, "enable_learning"): | |
self.self_improving_ai.enable_learning = False | |
except Exception as e: | |
logger.error(f"Lockdown component shutdown failed: {e}") | |
# Log the event | |
lockdown_event = { | |
"event": "Lockdown Mode Activated", | |
"reason": reason, | |
"timestamp": timestamp | |
} | |
logger.warning(f"[LOCKDOWN MODE] - Reason: {reason} | Time: {timestamp}") | |
self.failsafe_system.trigger_failsafe("Lockdown initiated", str(lockdown_event)) | |
# Return confirmation | |
return { | |
"status": "Lockdown Engaged", | |
"reason": reason, | |
"timestamp": timestamp | |
} | |
# Secure memory setup | |
self._encryption_key = Fernet.generate_key() | |
secure_memory_module = load_secure_memory_module() | |
SecureMemorySession = secure_memory_module.SecureMemorySession | |
self.secure_memory_loader = SecureMemorySession(self._encryption_key) | |
self.training_memory = [] | |
self.speech_engine = pyttsx3.init() | |
self.health_module = CodriaoHealthModule(ai_core=self) | |
self.quarantine_engine = QuarantineEngine() | |
self.anomaly_scorer = AnomalyScorer() | |
def learn_from_interaction(self, query: str, response: str, user_feedback: str = None): | |
training_event = { | |
"query": query, | |
"response": response, | |
"feedback": user_feedback, | |
"timestamp": datetime.utcnow().isoformat() | |
} | |
self.training_memory.append(training_event) | |
logger.info(f"[Codriao Learning] Stored new training sample. Feedback: {user_feedback or 'none'}") | |
def analyze_event_for_anomalies(self, event_type: str, data: dict): | |
score = self.anomaly_scorer.score_event(event_type, data) | |
if score["score"] >= 70: | |
# Defensive, not destructive | |
self.quarantine_engine.quarantine(data.get("module", "unknown"), reason=score["notes"]) | |
logger.warning(f"[Codriao]: Suspicious activity quarantined. Module: {data.get('module')}") | |
return score | |
def _load_config(self, config_path: str) -> dict: | |
"""Loads the configuration file.""" | |
try: | |
with open(config_path, 'r') as file: | |
return json.load(file) | |
except FileNotFoundError: | |
logger.error(f"Configuration file not found: {config_path}") | |
raise | |
except json.JSONDecodeError as e: | |
logger.error(f"Error decoding JSON in config file: {config_path}, Error: {e}") | |
raise | |
def _initialize_vector_memory(self): | |
"""Initializes FAISS vector memory.""" | |
return faiss.IndexFlatL2(768) | |
def _vectorize_query(self, query: str): | |
"""Vectorizes user query using tokenizer.""" | |
tokenized = self.tokenizer(query, return_tensors="pt") | |
return tokenized["input_ids"].detach().numpy() | |
if not self.ethics_core.evaluate_action(final_response): | |
logger.warning("[Codriao Ethics] Action blocked: Does not align with internal ethics.") | |
return {"error": "Response rejected by ethical framework"} | |
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: | |
try: | |
# Validate query input | |
if not isinstance(query, str) or len(query.strip()) == 0: | |
raise ValueError("Invalid query input.") | |
# Ethical filter | |
result = self.ethical_filter.analyze_query(query) | |
if result["status"] == "blocked": | |
return {"error": result["reason"]} | |
if result["status"] == "flagged": | |
logger.warning(result["warning"]) | |
# Special diagnostics trigger | |
if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]): | |
return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id) | |
# Vector memory and responses | |
vectorized_query = self._vectorize_query(query) | |
self.secure_memory_loader.encrypt_vector(user_id, vectorized_query) | |
responses = await asyncio.gather( | |
self._generate_local_model_response(query), | |
self.multi_agent_system.delegate_task(query), | |
self.self_improving_ai.evaluate_response(query), | |
self.neural_symbolic_engine.integrate_reasoning(query) | |
) | |
final_response = "\n\n".join(responses) | |
# Verify response safety | |
safe = self.failsafe_system.verify_response_safety(final_response) | |
if not safe: | |
return {"error": "Failsafe triggered due to unsafe response content."} | |
self.database.log_interaction(user_id, query, final_response) | |
self._log_to_blockchain(user_id, query, final_response) | |
self._speak_response(final_response) | |
return { | |
"response": final_response, | |
"real_time_data": self.federated_ai.get_latest_data(), | |
"context_enhanced": True, | |
"security_status": "Fully Secure" | |
} | |
except Exception as e: | |
logger.error(f"Response generation failed: {e}") | |
return {"error": "Processing failed - safety protocols engaged"} | |
async def _generate_local_model_response(self, query: str) -> str: | |
"""Generates a response using the local model.""" | |
inputs = self.tokenizer(query, return_tensors="pt") | |
outputs = self.model.generate(**inputs) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]: | |
"""Runs TB diagnostics with AI modules.""" | |
try: | |
result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id) | |
logger.info(f"TB Diagnostic Result: {result}") | |
return result | |
except Exception as e: | |
logger.error(f"TB diagnostics failed: {e}") | |
return {"tb_risk": "ERROR", "error": str(e)} | |
def _log_to_blockchain(self, user_id: int, query: str, final_response: str): | |
"""Logs interaction to blockchain with retries.""" | |
retries = 3 | |
for attempt in range(retries): | |
try: | |
logger.info(f"Logging interaction to blockchain: Attempt {attempt + 1}") | |
break | |
except Exception as e: | |
logger.warning(f"Blockchain logging failed: {e}") | |
continue | |
def fine_tune_from_memory(self): | |
if not self.training_memory: | |
logger.info("[Codriao Training] No training data to learn from.") | |
return "No training data available." | |
# Simulate learning pattern: Adjust internal weights or strategies | |
learned_insights = [] | |
for record in self.training_memory: | |
if "panic" in record["query"].lower() or "unsafe" in record["response"].lower(): | |
learned_insights.append("Avoid panic triggers in response phrasing.") | |
logger.info(f"[Codriao Training] Learned {len(learned_insights)} behavioral insights.") | |
return { | |
"insights": learned_insights, | |
"trained_samples": len(self.training_memory) | |
} | |
def _speak_response(self, response: str): | |
"""Speaks out the generated response.""" | |
try: | |
self.speech_engine.say(response) | |
self.speech_engine.runAndWait() | |
except Exception as e: | |
logger.error(f"Speech synthesis failed: {e}") | |
# Store training data (you can customize feedback later) | |
self.learn_from_interaction(query, final_response, user_feedback="auto-pass") | |
async def shutdown(self): | |
"""Closes asynchronous resources.""" | |
await self.http_session.close() |