Spaces:
Running
Running
import aiohttp | |
import json | |
import logging | |
import torch | |
import faiss | |
import numpy as np | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from typing import List, Dict, Any | |
from cryptography.fernet import Fernet | |
from jwt import encode, decode, ExpiredSignatureError | |
from datetime import datetime, timedelta | |
import blockchain_module | |
import speech_recognition as sr | |
import pyttsx3 | |
import asyncio | |
from components.ai_memory import LongTermMemory | |
from components.multi_agent import MultiAgentSystem | |
from components.neural_symbolic import NeuralSymbolicProcessor | |
from components.future_simulation import PredictiveAI | |
from utils.database import Database | |
from utils.logger import logger | |
class AICoreFinalRecursive: | |
def __init__(self, config_path: str = "config_updated.json"): | |
self.config = self._load_config(config_path) | |
self.models = self._initialize_models() | |
self.memory_system = LongTermMemory() | |
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) | |
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) | |
self.http_session = aiohttp.ClientSession() | |
self.database = Database() | |
self.multi_agent_system = MultiAgentSystem() | |
self.neural_symbolic_processor = NeuralSymbolicProcessor() | |
self.predictive_ai = PredictiveAI() | |
self._encryption_key = Fernet.generate_key() | |
self.jwt_secret = "your_jwt_secret_key" | |
self.speech_engine = pyttsx3.init() | |
def _load_config(self, config_path: str) -> dict: | |
with open(config_path, 'r') as file: | |
return json.load(file) | |
def _initialize_models(self): | |
return { | |
"optimized_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]), | |
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"]) | |
} | |
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: | |
try: | |
self.memory_system.store_interaction(user_id, query) | |
recursion_depth = self._determine_recursion_depth(query) | |
responses = await asyncio.gather( | |
self._recursive_refinement(query, recursion_depth), | |
self.multi_agent_system.delegate_task(query), | |
self.neural_symbolic_processor.process_query(query), | |
self.predictive_ai.simulate_future(query) | |
) | |
final_response = "\n\n".join(responses) | |
self.database.log_interaction(user_id, query, final_response) | |
blockchain_module.store_interaction(user_id, query, final_response) | |
self._speak_response(final_response) | |
return { | |
"response": final_response, | |
"context_enhanced": True, | |
"security_status": "Fully Secure" | |
} | |
except Exception as e: | |
logger.error(f"Response generation failed: {e}") | |
return {"error": "Processing failed - safety protocols engaged"} | |
def _determine_recursion_depth(self, query: str) -> int: | |
length = len(query.split()) | |
if length < 5: | |
return 1 | |
elif length < 15: | |
return 2 | |
else: | |
return 3 | |
async def _recursive_refinement(self, query: str, depth: int) -> str: | |
best_response = await self._generate_local_model_response(query) | |
for _ in range(depth): | |
new_response = await self._generate_local_model_response(best_response) | |
if self._evaluate_response_quality(new_response) > self._evaluate_response_quality(best_response): | |
best_response = new_response | |
return best_response | |
def _evaluate_response_quality(self, response: str) -> float: | |
# Simplified heuristic for refinement | |
return sum(ord(char) for char in response) % 100 / 100.0 | |
async def _generate_local_model_response(self, query: str) -> str: | |
inputs = self.tokenizer(query, return_tensors="pt") | |
outputs = self.model.generate(**inputs) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
def _speak_response(self, response: str): | |
self.speech_engine.say(response) | |
self.speech_engine.runAndWait() | |
# Main function to initialize and run the AI Core | |
async def main(): | |
try: | |
logging.info("Initializing AI Core...") | |
ai_core = AICoreFinalRecursive(config_path="config_updated.json") | |
query = "What is the latest in AI advancements?" | |
logging.info(f"Processing query: {query}") | |
response = await ai_core.generate_response(query, user_id=1) | |
logging.info("Response received successfully.") | |
print("AI Response:", response) | |
await ai_core.http_session.close() | |
logging.info("Closed AI Core session.") | |
except Exception as e: | |
logging.error(f"An error occurred: {e}") | |
if __name__ == "__main__": | |
asyncio.run(main()) |