File size: 3,317 Bytes
0a49a59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments, pipeline
from datasets import load_dataset, Dataset
import json

class HuggingFaceHelper:
    def __init__(self, model_path="./merged_model", dataset_path=None):
        self.model_path = model_path
        self.dataset_path = dataset_path
        self.device = "cuda" if torch.cuda.is_available() else "cpu"

        # Load tokenizer and model
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)
        self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map="auto")

    def check_model_integrity(self):
        print("πŸ” Checking model integrity...")
        for param_tensor in self.model.state_dict():
            print(f"{param_tensor}: {self.model.state_dict()[param_tensor].size()}")
        print("βœ… Model integrity check completed.")

    def test_pipeline(self):
        try:
            pipe = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer)
            output = pipe("What is the future of AI?", max_length=100)
            print("βœ… Model successfully generates text:", output)
        except Exception as e:
            print(f"❌ Pipeline Error: {e}")

    def load_dataset(self):
        if self.dataset_path:
            dataset = load_dataset("json", data_files=self.dataset_path, split="train")
            return dataset.map(self.tokenize_function, batched=True)
        else:
            raise ValueError("Dataset path not provided.")

    def tokenize_function(self, examples):
        return self.tokenizer(examples["messages"], truncation=True, padding="max_length", max_length=512)

    def fine_tune(self, output_dir="./fine_tuned_model", epochs=3, batch_size=4):
        dataset = self.load_dataset()
        
        training_args = TrainingArguments(
            output_dir=output_dir,
            evaluation_strategy="epoch",
            save_strategy="epoch",
            per_device_train_batch_size=batch_size,
            per_device_eval_batch_size=batch_size,
            num_train_epochs=epochs,
            weight_decay=0.01,
            logging_dir=f"{output_dir}/logs",
            push_to_hub=False,
        )

        trainer = Trainer(
            model=self.model,
            args=training_args,
            train_dataset=dataset,
            tokenizer=self.tokenizer,
        )

        trainer.train()
        self.save_model(output_dir)

    def save_model(self, output_dir):
        self.model.save_pretrained(output_dir)
        self.tokenizer.save_pretrained(output_dir)
        print(f"βœ… Model saved to {output_dir}")

    def generate_response(self, prompt, max_length=200):
        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
        output = self.model.generate(**inputs, max_length=max_length)
        return self.tokenizer.decode(output[0], skip_special_tokens=True)

# Example usage
if __name__ == "__main__":
    helper = HuggingFaceHelper(model_path="./merged_model", dataset_path="codette_training_data_finetune_fixed.jsonl")
    helper.check_model_integrity()
    helper.test_pipeline()
    helper.fine_tune(output_dir="./codette_finetuned", epochs=3, batch_size=4)
    print(helper.generate_response("How will AI impact cybersecurity?"))