Spaces:
Running
Running
File size: 2,157 Bytes
e424986 493d5e8 15ef175 493d5e8 62a8e44 493d5e8 246a8f4 493d5e8 246a8f4 493d5e8 246a8f4 493d5e8 15ef175 493d5e8 246a8f4 15ef175 246a8f4 493d5e8 15ef175 246a8f4 15ef175 246a8f4 493d5e8 246a8f4 493d5e8 246a8f4 28ecd3e 246a8f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import gradio as gr
import asyncio
import speech_recognition as sr
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
# Mock AI core for demonstration purposes
class AICore:
async def generate_response(self, query, user_id):
await asyncio.sleep(1) # Simulate async processing
return {"response": f"AI Response to: {query}"}
# Initialize the AI core
ai = AICore()
# Function to process the query and get the AI response
async def process_query(query):
result = await ai.generate_response(query, 1)
return result['response']
# Function to handle the text input submission
def submit_query(query, chat_history):
if not query:
return chat_history
response = asyncio.run(process_query(query))
chat_history.append({"role": "user", "content": query})
chat_history.append({"role": "assistant", "content": response})
return "", chat_history
# Function to handle voice input
def listen_voice_command():
recognizer = sr.Recognizer()
with sr.Microphone() as source:
logging.info("Listening...")
audio = recognizer.listen(source)
try:
query = recognizer.recognize_google(audio)
logging.info(f"Voice input recognized: {query}")
return query
except sr.UnknownValueError:
logging.error("Could not understand audio")
return "Could not understand audio"
except sr.RequestError as e:
logging.error(f"Could not request results; {e}")
return f"Could not request results; {e}"
# Gradio app
with gr.Blocks() as demo:
chatbot = gr.Chatbot(type="messages")
msg = gr.Textbox(label="Enter your message")
voice_btn = gr.Button("Speak")
clear = gr.Button("Clear")
# Event listeners
msg.submit(submit_query, [msg, chatbot], [msg, chatbot], queue=False)
voice_btn.click(listen_voice_command, None, msg, queue=False)
clear.click(lambda: None, None, chatbot, queue=False)
# Add the runtime error message to the app
gr.Error("runtime error\nNo @spaces.GPU function detected during startup\nContainer logs:")
demo.launch(show_error=True) |