import aiohttp import json import logging import torch import faiss import numpy as np from transformers import AutoModelForCausalLM, AutoTokenizer from typing import List, Dict, Any from cryptography.fernet import Fernet from jwt import encode, decode, ExpiredSignatureError from datetime import datetime, timedelta import blockchain_module import speech_recognition as sr import pyttsx3 from components.agix_reflection import SelfReflectiveAI from components.multi_agent import MultiAgentSystem from components.ar_integration import ARDataOverlay from components.neural_symbolic import NeuralSymbolicProcessor from components.federated_learning import FederatedAI from utils.database import Database from utils.logger import logger class AICoreAGIX: def __init__(self, config_path: str = "config.json"): self.config = self._load_config(config_path) self.models = self._initialize_models() self.context_memory = self._initialize_vector_memory() self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) self.http_session = aiohttp.ClientSession() self.database = Database() self.multi_agent_system = MultiAgentSystem() self.self_reflective_ai = SelfReflectiveAI() self.ar_overlay = ARDataOverlay() self.neural_symbolic_processor = NeuralSymbolicProcessor() self.federated_ai = FederatedAI() self._encryption_key = Fernet.generate_key() self.jwt_secret = "your_jwt_secret_key" self.speech_engine = pyttsx3.init() def _load_config(self, config_path: str) -> dict: with open(config_path, 'r') as file: return json.load(file) def _initialize_models(self): return { "agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]), "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"]) } def _initialize_vector_memory(self): return faiss.IndexFlatL2(768) async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: try: vectorized_query = self._vectorize_query(query) self.context_memory.add(np.array([vectorized_query])) model_response = await self._generate_local_model_response(query) agent_response = self.multi_agent_system.delegate_task(query) self_reflection = self.self_reflective_ai.evaluate_response(query, model_response) ar_data = self.ar_overlay.fetch_augmented_data(query) neural_reasoning = self.neural_symbolic_processor.process_query(query) final_response = f"{model_response} {agent_response} {self_reflection} AR Insights: {ar_data} Logic: {neural_reasoning}" self.database.log_interaction(user_id, query, final_response) blockchain_module.store_interaction(user_id, query, final_response) self._speak_response(final_response) return { "response": final_response, "real_time_data": self.federated_ai.get_latest_data(), "context_enhanced": True, "security_status": "Fully Secure" } except Exception as e: logger.error(f"Response generation failed: {e}") return {"error": "Processing failed - safety protocols engaged"} def _vectorize_query(self, query: str): tokenized = self.tokenizer(query, return_tensors="pt") return tokenized["input_ids"].detach().numpy() async def _generate_local_model_response(self, query: str) -> str: inputs = self.tokenizer(query, return_tensors="pt") outputs = self.model.generate(**inputs) return self.tokenizer.decode(outputs[0], skip_special_tokens=True) def _speak_response(self, response: str): self.speech_engine.say(response) self.speech_engine.runAndWait()