import ollama # Import Ollama for local Llama 3 inference class AICoreAGIX: def __init__(self, config_path: str = "config.json"): self.config = self._load_config(config_path) self.http_session = aiohttp.ClientSession() self.database = Database() self.multi_agent_system = MultiAgentSystem() self.self_reflective_ai = SelfReflectiveAI() self.ar_overlay = ARDataOverlay() self.neural_symbolic_processor = NeuralSymbolicProcessor() self.federated_ai = FederatedAI() self._encryption_key = Fernet.generate_key() self.jwt_secret = "your_jwt_secret_key" self.speech_engine = pyttsx3.init() async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: try: model_response = await self._generate_local_model_response(query) agent_response = self.multi_agent_system.delegate_task(query) self_reflection = self.self_reflective_ai.evaluate_response(query, model_response) ar_data = self.ar_overlay.fetch_augmented_data(query) neural_reasoning = self.neural_symbolic_processor.process_query(query) final_response = f"{model_response}\n\n{agent_response}\n\n{self_reflection}\n\nAR Insights: {ar_data}\n\nLogic: {neural_reasoning}" self.database.log_interaction(user_id, query, final_response) blockchain_module.store_interaction(user_id, query, final_response) self._speak_response(final_response) return { "response": final_response, "real_time_data": self.federated_ai.get_latest_data(), "context_enhanced": True, "security_status": "Fully Secure" } except Exception as e: logger.error(f"Response generation failed: {e}") return {"error": "Processing failed - safety protocols engaged"} async def _generate_local_model_response(self, query: str) -> str: """Use Ollama (Llama 3) for local AI inference.""" response = ollama.chat(model="llama3", messages=[{"role": "user", "content": query}]) return response["message"]["content"] def _speak_response(self, response: str): self.speech_engine.say(response) self.speech_engine.runAndWait()