File size: 20,542 Bytes
6a6227f
 
2654a43
 
 
 
 
 
 
 
fe2cfb5
 
6a6227f
4c8a229
6a6227f
7b80416
6a6227f
 
 
 
 
d353f7f
6927e60
6eb1d7d
905c952
 
6a6227f
 
 
 
 
 
 
 
3e791eb
6a6227f
 
26c80cc
 
 
 
 
d353f7f
26c80cc
 
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d353f7f
 
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d353f7f
6a6227f
 
 
 
 
 
 
d353f7f
6a6227f
 
 
 
 
 
 
 
 
 
 
 
2654a43
 
905c952
 
 
6a6227f
 
 
 
 
 
 
 
 
 
 
6eb1d7d
6a6227f
6eb1d7d
d353f7f
6a6227f
 
905c952
bde7aa3
905c952
bde7aa3
905c952
d353f7f
905c952
 
 
 
2654a43
 
 
 
 
 
 
d35e956
 
 
c927d01
d35e956
 
 
 
 
 
 
 
 
 
 
 
 
4c8a229
 
4ad1207
 
 
3fcaf5f
4c8a229
4ad1207
 
 
3fcaf5f
 
4ad1207
3fcaf5f
4ad1207
3fcaf5f
4c8a229
3fcaf5f
 
 
 
4c8a229
 
 
ffa8c32
1b319b5
ffa8c32
 
 
 
 
 
 
 
 
4c8a229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b84ab8b
2654a43
d35e956
ffa8c32
 
 
 
 
 
 
 
d35e956
2654a43
792ef4e
4c8a229
4f5ce17
 
792ef4e
 
905c952
 
1b319b5
d35e956
 
 
 
 
 
 
 
 
 
b84ab8b
d35e956
 
 
 
 
 
37682de
a2d5604
d35e956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f5ce17
d35e956
 
1b319b5
905c952
d353f7f
 
 
 
 
 
 
905c952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d353f7f
905c952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d63caf4
c35ec9e
 
905c952
 
f97271b
 
905c952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d353f7f
905c952
 
 
 
792ef4e
 
905c952
6a6227f
 
 
 
2654a43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a6227f
 
cd136b4
21c6c10
32b0bc1
b339a83
32b0bc1
 
6a6227f
d353f7f
6a6227f
 
 
0ed20b9
 
 
 
 
 
 
 
 
 
 
 
 
d353f7f
0ed20b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d353f7f
0ed20b9
 
 
 
 
 
7f24de3
0ed20b9
 
 
 
 
 
 
 
 
 
d353f7f
0ed20b9
7f24de3
0ed20b9
 
 
 
4690057
cd136b4
0ed20b9
 
 
 
 
 
 
d353f7f
 
1b319b5
0ed20b9
905c952
beb7445
4c8a229
 
 
ffa8c32
24442c0
 
 
4c8a229
ffa8c32
 
4c8a229
 
 
 
ffa8c32
4c8a229
 
ffa8c32
 
 
 
 
 
 
 
 
4c8a229
ffa8c32
4c8a229
 
 
 
 
ffa8c32
4c8a229
 
 
ffa8c32
 
4c8a229
 
ffa8c32
4c8a229
 
ffa8c32
 
 
 
 
4c8a229
 
ffa8c32
 
 
 
 
a6fe1b1
 
 
 
 
 
 
 
2654a43
ffa8c32
4c8a229
ffa8c32
 
4c8a229
 
2654a43
 
 
a6fe1b1
2654a43
 
ffa8c32
beb7445
ffa8c32
 
1b319b5
4c8a229
 
905c952
6a6227f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
import argparse
import os
import gc
import psutil
import threading
from pathlib import Path
import shutil
import time
import glob
from datetime import datetime
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
from datetime import datetime
import cv2
import gradio as gr
import spaces
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image

torch.jit.script = lambda f: f
from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline, CatVTONPix2PixPipeline
from model.flux.pipeline_flux_tryon import FluxTryOnPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--base_model_path",
        type=str,
        default="booksforcharlie/stable-diffusion-inpainting",
        help=(
            "The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
        ),
    )
    parser.add_argument(
        "--p2p_base_model_path",
        type=str,
        default="timbrooks/instruct-pix2pix",
        help=(
            "The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
        ),
    )
    parser.add_argument(
        "--resume_path",
        type=str,
        default="zhengchong/CatVTON",
        help=(
            "The Path to the checkpoint of trained tryon model."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="resource/demo/output",
        help="The output directory where the model predictions will be written.",
    )

    parser.add_argument(
        "--width",
        type=int,
        default=768,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--height",
        type=int,
        default=1024,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--repaint",
        action="store_true",
        help="Whether to repaint the result image with the original background."
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        default=True,
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="bf16",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    return args


def image_grid(imgs, rows, cols):
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


args = parse_args()
OUTPUT_DIR = "generated_images"
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Mask-based CatVTON
catvton_repo = "zhengchong/CatVTON"
repo_path = snapshot_download(repo_id=catvton_repo)
# Pipeline
pipeline = CatVTONPipeline(
    base_ckpt=args.base_model_path,
    attn_ckpt=repo_path,
    attn_ckpt_version="mix",
    weight_dtype=init_weight_dtype(args.mixed_precision),
    use_tf32=args.allow_tf32,
    device='cuda'
)
# AutoMasker
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
automasker = AutoMasker(
    densepose_ckpt=os.path.join(repo_path, "DensePose"),
    schp_ckpt=os.path.join(repo_path, "SCHP"),
    device='cuda',
)

# Flux-based CatVTON
access_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
flux_repo = "black-forest-labs/FLUX.1-Fill-dev"
pipeline_flux = FluxTryOnPipeline.from_pretrained(flux_repo, use_auth_token=access_token)
pipeline_flux.load_lora_weights(
    os.path.join(repo_path, "flux-lora"),
    weight_name='pytorch_lora_weights.safetensors'
)
pipeline_flux.to("cuda", init_weight_dtype(args.mixed_precision))

def save_generated_image(image, frame_no):
    """Save generated image with timestamp and model name"""
    filename = f"{frame_no}_frame.png"
    filepath = os.path.join(OUTPUT_DIR, filename)
    image.save(filepath)
    return filepath
    
def print_image_info(img):
    # Basic attributes
    info = {
       
        "Format": img.format,
        "Mode": img.mode,
        "Size": img.size,
        "Width": img.width,
        "Height": img.height,
        "DPI": img.info.get('dpi', "N/A"),
        "Is Animated": getattr(img, "is_animated", False),
        "Frames": getattr(img, "n_frames", 1)
    }

    print("----- Image Information -----")
    for key, value in info.items():
        print(f"{key}: {value}")

def extract_frames(video_path):
    if not os.path.exists(video_path):
        print("Video file does not exist:", video_path)
        return None
    # Open the video file
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        print(f"Error: Could not open video file {video_path}")
        return []
    frames = []
    success, frame = cap.read()
    print(f"cap read status {success}")
    while success:
        print("getting frame")
        # Convert frame from BGR (OpenCV default) to RGB
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        # Convert the numpy array (frame) to a PIL Image
        pil_frame = Image.fromarray(frame_rgb)
        frames.append(pil_frame)
        success, frame = cap.read()
    cap.release()
    return frames

#process_video_frames
@spaces.GPU(duration=175)
def process_video_frames(
        video,
        cloth_image,
        cloth_type,
        num_inference_steps,
        guidance_scale,
        seed,
        show_type
):
    """
    Process each frame of the video through the flux pipeline
    
    Args:
        video (str): Path to the input video file
        cloth_image (str): Path to the cloth image
        ... (other parameters from original function)
    
    Returns:
        list: Processed frames
    """
    # Extract frames from video
    frames = extract_frames(video)
    
    processed_frames = []
    print(f"processed_frames {len(frames)}")
    for index, person_image in enumerate(frames):
        result_image = proc_function_vidfl(
            person_image,
            cloth_image,
        cloth_type,
        num_inference_steps,
        guidance_scale,
        seed,
        show_type
        )
        print_image_info(result_image)
        save_generated_image(result_image,index)
        gallery_images = update_gallery()
        processed_frames.append(result_image)
        print("YEILEDING process_video_frames")
        yield result_image,gallery_images
    gallery_images = update_gallery()
    yield processed_frames, gallery_images


@spaces.GPU(duration=175)
def proc_function_vidfl(
        person_image,
        cloth_image,
        cloth_type,
        num_inference_steps,
        guidance_scale,
        seed,
        show_type
):

    print_image_info(person_image)
    # Set random seed
    generator = None
    if seed != -1:
        generator = torch.Generator(device='cuda').manual_seed(seed)

    # Process input images
    #person_image = Image.open(person_image).convert("RGB")
    cloth_image = Image.open(cloth_image).convert("RGB")

    # Adjust image sizes
    person_image = resize_and_crop(person_image, (args.width, args.height))
    cloth_image = resize_and_padding(cloth_image, (args.width, args.height))

    # Process mask

    mask = automasker(
        person_image,
        cloth_type
    )['mask']
    mask = mask_processor.blur(mask, blur_factor=9)

    # Inference
    result_image = pipeline_flux(
        image=person_image,
        condition_image=cloth_image,
        mask_image=mask,
        width=args.width,
        height=args.height,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator
    ).images[0]
    print("YEILEDING proc_function_vidfl")
    return result_image
        
@spaces.GPU(duration=175)
def submit_function_flux(
        person_image,
        cloth_image,
        cloth_type,
        num_inference_steps,
        guidance_scale,
        seed,
        show_type
):
    # Process image editor input
    person_image, mask = person_image["background"], person_image["layers"][0]
    mask = Image.open(mask).convert("L")
    if len(np.unique(np.array(mask))) == 1:
        mask = None
    else:
        mask = np.array(mask)
        mask[mask > 0] = 255
        mask = Image.fromarray(mask)

    # Set random seed
    generator = None
    if seed != -1:
        generator = torch.Generator(device='cuda').manual_seed(seed)

    # Process input images
    person_image = Image.open(person_image).convert("RGB")
    cloth_image = Image.open(cloth_image).convert("RGB")

    # Adjust image sizes
    person_image = resize_and_crop(person_image, (args.width, args.height))
    cloth_image = resize_and_padding(cloth_image, (args.width, args.height))

    # Process mask
    if mask is not None:
        mask = resize_and_crop(mask, (args.width, args.height))
    else:
        mask = automasker(
            person_image,
            cloth_type
        )['mask']
    mask = mask_processor.blur(mask, blur_factor=9)

    # Inference
    result_image = pipeline_flux(
        image=person_image,
        condition_image=cloth_image,
        mask_image=mask,
        width=args.width,
        height=args.height,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator
    ).images[0]

    # Post-processing
    masked_person = vis_mask(person_image, mask)

    # Return result based on show type
    if show_type == "result only":
        return result_image
    else:
        width, height = person_image.size
        if show_type == "input & result":
            condition_width = width // 2
            conditions = image_grid([person_image, cloth_image], 2, 1)
        else:
            condition_width = width // 3
            conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)

        conditions = conditions.resize((condition_width, height), Image.NEAREST)
        new_result_image = Image.new("RGB", (width + condition_width + 5, height))
        new_result_image.paste(conditions, (0, 0))
        new_result_image.paste(result_image, (condition_width + 5, 0))
        gallery_images = update_gallery()
        return new_result_image, gallery_images


def person_example_fn(image_path):
    return image_path

def get_generated_images():
    """Get list of generated images with their details"""
    files = glob.glob(os.path.join(OUTPUT_DIR, "*.png"))
    files.sort(key=os.path.getctime, reverse=True)  # Sort by creation time
    return [
        {
            "path": f,
            "name": os.path.basename(f),
            "date": datetime.fromtimestamp(os.path.getctime(f)).strftime("%Y-%m-%d %H:%M:%S"),
            "size": f"{os.path.getsize(f) / 1024:.1f} KB"
        }
        for f in files
    ]

def update_gallery():
        """Update the file gallery"""
        files = get_generated_images()
        return [
            (f["path"], f"{f['name']}\n{f['date']}")
            for f in files
        ]
    
HEADER = """
<h1 style="text-align: center;"> 馃悎 CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models </h1>

<br>
路 This demo and our weights are only for Non-commercial Use. <br>
路 Thanks to <a href="https://huggingface.co./zero-gpu-explorers">ZeroGPU</a> for providing A100 for our <a href="https://huggingface.co./spaces/zhengchong/CatVTON">HuggingFace Space</a>. <br>
路 SafetyChecker is set to filter NSFW content, but it may block normal results too. Please adjust the <span>`seed`</span> for normal outcomes.<br> 
"""


def app_gradio():
    with gr.Blocks(title="CatVTON") as demo:
        gr.Markdown(HEADER)

        with gr.Tab("Mask-based & Flux.1 Fill Dev"):
            with gr.Row():
                with gr.Column(scale=1, min_width=350):
                    with gr.Row():
                        image_path_flux = gr.Image(
                            type="filepath",
                            interactive=True,
                            visible=False,
                        )
                        person_image_flux = gr.ImageEditor(
                            interactive=True, label="Person Image", type="filepath"
                        )

                    with gr.Row():
                        with gr.Column(scale=1, min_width=230):
                            cloth_image_flux = gr.Image(
                                interactive=True, label="Condition Image", type="filepath"
                            )
                        with gr.Column(scale=1, min_width=120):
                            gr.Markdown(
                                '<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `馃枌锔廯 above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
                            )
                            cloth_type = gr.Radio(
                                label="Try-On Cloth Type",
                                choices=["upper", "lower", "overall"],
                                value="upper",
                            )

                    submit_flux = gr.Button("Submit")
                    gr.Markdown(
                        '<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
                    )

                    with gr.Accordion("Advanced Options", open=False):
                        num_inference_steps_flux = gr.Slider(
                            label="Inference Step", minimum=10, maximum=100, step=5, value=50
                        )
                        # Guidence Scale
                        guidance_scale_flux = gr.Slider(
                            label="CFG Strenth", minimum=0.0, maximum=50, step=0.5, value=30
                        )
                        # Random Seed
                        seed_flux = gr.Slider(
                            label="Seed", minimum=-1, maximum=10000, step=1, value=42
                        )
                        show_type = gr.Radio(
                            label="Show Type",
                            choices=["result only", "input & result", "input & mask & result"],
                            value="input & mask & result",
                        )

                with gr.Column(scale=2, min_width=500):
                    result_image_flux = gr.Image(interactive=False, label="Result")
                    with gr.Row():
                        # Photo Examples
                        root_path = "resource/demo/example"
                        with gr.Column():
                            gal_output = gr.Gallery(label="Processed Frames")
                        

                image_path_flux.change(
                    person_example_fn, inputs=image_path_flux, outputs=person_image_flux
                )

                submit_flux.click(
                    submit_function_flux,
                    [person_image_flux, cloth_image_flux, cloth_type, num_inference_steps_flux, guidance_scale_flux,
                     seed_flux, show_type],
                    [result_image_flux,gal_output]
                )

        with gr.Tab("Video Flux"):
            with gr.Row():
                with gr.Column(scale=1, min_width=350):
                    with gr.Row():
                        image_path_vidflux = gr.Image(
                            type="filepath",
                            interactive=True,
                            visible=False,
                        )
                        person_image_vidflux = gr.Video(
                            
                        )

                    with gr.Row():
                        with gr.Column(scale=1, min_width=230):
                            cloth_image_vidflux = gr.Image(
                                interactive=True, label="Condition Image", type="filepath"
                            )
                        with gr.Column(scale=1, min_width=120):
                            gr.Markdown(
                                '<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `馃枌锔廯 above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
                            )
                            cloth_type = gr.Radio(
                                label="Try-On Cloth Type",
                                choices=["upper", "lower", "overall"],
                                value="upper",
                            )

                    submit_flux = gr.Button("Submit")
                    gr.Markdown(
                        '<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
                    )

                    with gr.Accordion("Advanced Options", open=False):
                        num_inference_steps_vidflux = gr.Slider(
                            label="Inference Step", minimum=10, maximum=100, step=5, value=50
                        )
                        # Guidence Scale
                        guidance_scale_vidflux = gr.Slider(
                            label="CFG Strenth", minimum=0.0, maximum=50, step=0.5, value=30
                        )
                        # Random Seed
                        seed_vidflux = gr.Slider(
                            label="Seed", minimum=-1, maximum=10000, step=1, value=42
                        )
                        show_type = gr.Radio(
                            label="Show Type",
                            choices=["result only", "input & result", "input & mask & result"],
                            value="input & mask & result",
                        )

                with gr.Column(scale=2, min_width=500):
                    result_image_vidflux = gr.Image(interactive=False, label="Result")
                    with gr.Row():
                        # Photo Examples
                        root_path = "resource/demo/example"
                        with gr.Column():
                            gal_output = gr.Gallery(
                        label="Generated Images",
                        show_label=True,
                        elem_id="gal_output",
                        columns=3,
                        height=800,
                        visible=True
                    )
                            refresh_button = gr.Button("Refresh Gallery")
                        

                image_path_vidflux.change(
                    person_example_fn, inputs=image_path_vidflux, outputs=person_image_vidflux
                )

                refresh_button.click(
        fn=update_gallery,
        inputs=[],
        outputs=[gal_output],
    )

                submit_flux.click(
                    process_video_frames,
                    [person_image_vidflux, cloth_image_vidflux, cloth_type, num_inference_steps_vidflux, guidance_scale_vidflux,
                     seed_vidflux, show_type],
                    [result_image_vidflux,gal_output]
                )


    demo.queue().launch(share=True, show_error=True)


if __name__ == "__main__":
    app_gradio()