Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,542 Bytes
6a6227f 2654a43 fe2cfb5 6a6227f 4c8a229 6a6227f 7b80416 6a6227f d353f7f 6927e60 6eb1d7d 905c952 6a6227f 3e791eb 6a6227f 26c80cc d353f7f 26c80cc 6a6227f d353f7f 6a6227f d353f7f 6a6227f d353f7f 6a6227f 2654a43 905c952 6a6227f 6eb1d7d 6a6227f 6eb1d7d d353f7f 6a6227f 905c952 bde7aa3 905c952 bde7aa3 905c952 d353f7f 905c952 2654a43 d35e956 c927d01 d35e956 4c8a229 4ad1207 3fcaf5f 4c8a229 4ad1207 3fcaf5f 4ad1207 3fcaf5f 4ad1207 3fcaf5f 4c8a229 3fcaf5f 4c8a229 ffa8c32 1b319b5 ffa8c32 4c8a229 b84ab8b 2654a43 d35e956 ffa8c32 d35e956 2654a43 792ef4e 4c8a229 4f5ce17 792ef4e 905c952 1b319b5 d35e956 b84ab8b d35e956 37682de a2d5604 d35e956 4f5ce17 d35e956 1b319b5 905c952 d353f7f 905c952 d353f7f 905c952 d63caf4 c35ec9e 905c952 f97271b 905c952 d353f7f 905c952 792ef4e 905c952 6a6227f 2654a43 6a6227f cd136b4 21c6c10 32b0bc1 b339a83 32b0bc1 6a6227f d353f7f 6a6227f 0ed20b9 d353f7f 0ed20b9 d353f7f 0ed20b9 7f24de3 0ed20b9 d353f7f 0ed20b9 7f24de3 0ed20b9 4690057 cd136b4 0ed20b9 d353f7f 1b319b5 0ed20b9 905c952 beb7445 4c8a229 ffa8c32 24442c0 4c8a229 ffa8c32 4c8a229 ffa8c32 4c8a229 ffa8c32 4c8a229 ffa8c32 4c8a229 ffa8c32 4c8a229 ffa8c32 4c8a229 ffa8c32 4c8a229 ffa8c32 4c8a229 ffa8c32 a6fe1b1 2654a43 ffa8c32 4c8a229 ffa8c32 4c8a229 2654a43 a6fe1b1 2654a43 ffa8c32 beb7445 ffa8c32 1b319b5 4c8a229 905c952 6a6227f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
import argparse
import os
import gc
import psutil
import threading
from pathlib import Path
import shutil
import time
import glob
from datetime import datetime
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
from datetime import datetime
import cv2
import gradio as gr
import spaces
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
torch.jit.script = lambda f: f
from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline, CatVTONPix2PixPipeline
from model.flux.pipeline_flux_tryon import FluxTryOnPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--base_model_path",
type=str,
default="booksforcharlie/stable-diffusion-inpainting",
help=(
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
),
)
parser.add_argument(
"--p2p_base_model_path",
type=str,
default="timbrooks/instruct-pix2pix",
help=(
"The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
),
)
parser.add_argument(
"--resume_path",
type=str,
default="zhengchong/CatVTON",
help=(
"The Path to the checkpoint of trained tryon model."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="resource/demo/output",
help="The output directory where the model predictions will be written.",
)
parser.add_argument(
"--width",
type=int,
default=768,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--height",
type=int,
default=1024,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--repaint",
action="store_true",
help="Whether to repaint the result image with the original background."
)
parser.add_argument(
"--allow_tf32",
action="store_true",
default=True,
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="bf16",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
args = parse_args()
OUTPUT_DIR = "generated_images"
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Mask-based CatVTON
catvton_repo = "zhengchong/CatVTON"
repo_path = snapshot_download(repo_id=catvton_repo)
# Pipeline
pipeline = CatVTONPipeline(
base_ckpt=args.base_model_path,
attn_ckpt=repo_path,
attn_ckpt_version="mix",
weight_dtype=init_weight_dtype(args.mixed_precision),
use_tf32=args.allow_tf32,
device='cuda'
)
# AutoMasker
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
automasker = AutoMasker(
densepose_ckpt=os.path.join(repo_path, "DensePose"),
schp_ckpt=os.path.join(repo_path, "SCHP"),
device='cuda',
)
# Flux-based CatVTON
access_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
flux_repo = "black-forest-labs/FLUX.1-Fill-dev"
pipeline_flux = FluxTryOnPipeline.from_pretrained(flux_repo, use_auth_token=access_token)
pipeline_flux.load_lora_weights(
os.path.join(repo_path, "flux-lora"),
weight_name='pytorch_lora_weights.safetensors'
)
pipeline_flux.to("cuda", init_weight_dtype(args.mixed_precision))
def save_generated_image(image, frame_no):
"""Save generated image with timestamp and model name"""
filename = f"{frame_no}_frame.png"
filepath = os.path.join(OUTPUT_DIR, filename)
image.save(filepath)
return filepath
def print_image_info(img):
# Basic attributes
info = {
"Format": img.format,
"Mode": img.mode,
"Size": img.size,
"Width": img.width,
"Height": img.height,
"DPI": img.info.get('dpi', "N/A"),
"Is Animated": getattr(img, "is_animated", False),
"Frames": getattr(img, "n_frames", 1)
}
print("----- Image Information -----")
for key, value in info.items():
print(f"{key}: {value}")
def extract_frames(video_path):
if not os.path.exists(video_path):
print("Video file does not exist:", video_path)
return None
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"Error: Could not open video file {video_path}")
return []
frames = []
success, frame = cap.read()
print(f"cap read status {success}")
while success:
print("getting frame")
# Convert frame from BGR (OpenCV default) to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Convert the numpy array (frame) to a PIL Image
pil_frame = Image.fromarray(frame_rgb)
frames.append(pil_frame)
success, frame = cap.read()
cap.release()
return frames
#process_video_frames
@spaces.GPU(duration=175)
def process_video_frames(
video,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type
):
"""
Process each frame of the video through the flux pipeline
Args:
video (str): Path to the input video file
cloth_image (str): Path to the cloth image
... (other parameters from original function)
Returns:
list: Processed frames
"""
# Extract frames from video
frames = extract_frames(video)
processed_frames = []
print(f"processed_frames {len(frames)}")
for index, person_image in enumerate(frames):
result_image = proc_function_vidfl(
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type
)
print_image_info(result_image)
save_generated_image(result_image,index)
gallery_images = update_gallery()
processed_frames.append(result_image)
print("YEILEDING process_video_frames")
yield result_image,gallery_images
gallery_images = update_gallery()
yield processed_frames, gallery_images
@spaces.GPU(duration=175)
def proc_function_vidfl(
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type
):
print_image_info(person_image)
# Set random seed
generator = None
if seed != -1:
generator = torch.Generator(device='cuda').manual_seed(seed)
# Process input images
#person_image = Image.open(person_image).convert("RGB")
cloth_image = Image.open(cloth_image).convert("RGB")
# Adjust image sizes
person_image = resize_and_crop(person_image, (args.width, args.height))
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
# Process mask
mask = automasker(
person_image,
cloth_type
)['mask']
mask = mask_processor.blur(mask, blur_factor=9)
# Inference
result_image = pipeline_flux(
image=person_image,
condition_image=cloth_image,
mask_image=mask,
width=args.width,
height=args.height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
).images[0]
print("YEILEDING proc_function_vidfl")
return result_image
@spaces.GPU(duration=175)
def submit_function_flux(
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type
):
# Process image editor input
person_image, mask = person_image["background"], person_image["layers"][0]
mask = Image.open(mask).convert("L")
if len(np.unique(np.array(mask))) == 1:
mask = None
else:
mask = np.array(mask)
mask[mask > 0] = 255
mask = Image.fromarray(mask)
# Set random seed
generator = None
if seed != -1:
generator = torch.Generator(device='cuda').manual_seed(seed)
# Process input images
person_image = Image.open(person_image).convert("RGB")
cloth_image = Image.open(cloth_image).convert("RGB")
# Adjust image sizes
person_image = resize_and_crop(person_image, (args.width, args.height))
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
# Process mask
if mask is not None:
mask = resize_and_crop(mask, (args.width, args.height))
else:
mask = automasker(
person_image,
cloth_type
)['mask']
mask = mask_processor.blur(mask, blur_factor=9)
# Inference
result_image = pipeline_flux(
image=person_image,
condition_image=cloth_image,
mask_image=mask,
width=args.width,
height=args.height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
).images[0]
# Post-processing
masked_person = vis_mask(person_image, mask)
# Return result based on show type
if show_type == "result only":
return result_image
else:
width, height = person_image.size
if show_type == "input & result":
condition_width = width // 2
conditions = image_grid([person_image, cloth_image], 2, 1)
else:
condition_width = width // 3
conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)
conditions = conditions.resize((condition_width, height), Image.NEAREST)
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
new_result_image.paste(conditions, (0, 0))
new_result_image.paste(result_image, (condition_width + 5, 0))
gallery_images = update_gallery()
return new_result_image, gallery_images
def person_example_fn(image_path):
return image_path
def get_generated_images():
"""Get list of generated images with their details"""
files = glob.glob(os.path.join(OUTPUT_DIR, "*.png"))
files.sort(key=os.path.getctime, reverse=True) # Sort by creation time
return [
{
"path": f,
"name": os.path.basename(f),
"date": datetime.fromtimestamp(os.path.getctime(f)).strftime("%Y-%m-%d %H:%M:%S"),
"size": f"{os.path.getsize(f) / 1024:.1f} KB"
}
for f in files
]
def update_gallery():
"""Update the file gallery"""
files = get_generated_images()
return [
(f["path"], f"{f['name']}\n{f['date']}")
for f in files
]
HEADER = """
<h1 style="text-align: center;"> 馃悎 CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models </h1>
<br>
路 This demo and our weights are only for Non-commercial Use. <br>
路 Thanks to <a href="https://huggingface.co./zero-gpu-explorers">ZeroGPU</a> for providing A100 for our <a href="https://huggingface.co./spaces/zhengchong/CatVTON">HuggingFace Space</a>. <br>
路 SafetyChecker is set to filter NSFW content, but it may block normal results too. Please adjust the <span>`seed`</span> for normal outcomes.<br>
"""
def app_gradio():
with gr.Blocks(title="CatVTON") as demo:
gr.Markdown(HEADER)
with gr.Tab("Mask-based & Flux.1 Fill Dev"):
with gr.Row():
with gr.Column(scale=1, min_width=350):
with gr.Row():
image_path_flux = gr.Image(
type="filepath",
interactive=True,
visible=False,
)
person_image_flux = gr.ImageEditor(
interactive=True, label="Person Image", type="filepath"
)
with gr.Row():
with gr.Column(scale=1, min_width=230):
cloth_image_flux = gr.Image(
interactive=True, label="Condition Image", type="filepath"
)
with gr.Column(scale=1, min_width=120):
gr.Markdown(
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `馃枌锔廯 above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
)
cloth_type = gr.Radio(
label="Try-On Cloth Type",
choices=["upper", "lower", "overall"],
value="upper",
)
submit_flux = gr.Button("Submit")
gr.Markdown(
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
)
with gr.Accordion("Advanced Options", open=False):
num_inference_steps_flux = gr.Slider(
label="Inference Step", minimum=10, maximum=100, step=5, value=50
)
# Guidence Scale
guidance_scale_flux = gr.Slider(
label="CFG Strenth", minimum=0.0, maximum=50, step=0.5, value=30
)
# Random Seed
seed_flux = gr.Slider(
label="Seed", minimum=-1, maximum=10000, step=1, value=42
)
show_type = gr.Radio(
label="Show Type",
choices=["result only", "input & result", "input & mask & result"],
value="input & mask & result",
)
with gr.Column(scale=2, min_width=500):
result_image_flux = gr.Image(interactive=False, label="Result")
with gr.Row():
# Photo Examples
root_path = "resource/demo/example"
with gr.Column():
gal_output = gr.Gallery(label="Processed Frames")
image_path_flux.change(
person_example_fn, inputs=image_path_flux, outputs=person_image_flux
)
submit_flux.click(
submit_function_flux,
[person_image_flux, cloth_image_flux, cloth_type, num_inference_steps_flux, guidance_scale_flux,
seed_flux, show_type],
[result_image_flux,gal_output]
)
with gr.Tab("Video Flux"):
with gr.Row():
with gr.Column(scale=1, min_width=350):
with gr.Row():
image_path_vidflux = gr.Image(
type="filepath",
interactive=True,
visible=False,
)
person_image_vidflux = gr.Video(
)
with gr.Row():
with gr.Column(scale=1, min_width=230):
cloth_image_vidflux = gr.Image(
interactive=True, label="Condition Image", type="filepath"
)
with gr.Column(scale=1, min_width=120):
gr.Markdown(
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `馃枌锔廯 above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
)
cloth_type = gr.Radio(
label="Try-On Cloth Type",
choices=["upper", "lower", "overall"],
value="upper",
)
submit_flux = gr.Button("Submit")
gr.Markdown(
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
)
with gr.Accordion("Advanced Options", open=False):
num_inference_steps_vidflux = gr.Slider(
label="Inference Step", minimum=10, maximum=100, step=5, value=50
)
# Guidence Scale
guidance_scale_vidflux = gr.Slider(
label="CFG Strenth", minimum=0.0, maximum=50, step=0.5, value=30
)
# Random Seed
seed_vidflux = gr.Slider(
label="Seed", minimum=-1, maximum=10000, step=1, value=42
)
show_type = gr.Radio(
label="Show Type",
choices=["result only", "input & result", "input & mask & result"],
value="input & mask & result",
)
with gr.Column(scale=2, min_width=500):
result_image_vidflux = gr.Image(interactive=False, label="Result")
with gr.Row():
# Photo Examples
root_path = "resource/demo/example"
with gr.Column():
gal_output = gr.Gallery(
label="Generated Images",
show_label=True,
elem_id="gal_output",
columns=3,
height=800,
visible=True
)
refresh_button = gr.Button("Refresh Gallery")
image_path_vidflux.change(
person_example_fn, inputs=image_path_vidflux, outputs=person_image_vidflux
)
refresh_button.click(
fn=update_gallery,
inputs=[],
outputs=[gal_output],
)
submit_flux.click(
process_video_frames,
[person_image_vidflux, cloth_image_vidflux, cloth_type, num_inference_steps_vidflux, guidance_scale_vidflux,
seed_vidflux, show_type],
[result_image_vidflux,gal_output]
)
demo.queue().launch(share=True, show_error=True)
if __name__ == "__main__":
app_gradio()
|