Rabinaya commited on
Commit
5f325ee
·
verified ·
1 Parent(s): 3654aca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +142 -147
app.py CHANGED
@@ -1,154 +1,149 @@
 
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
  )
 
79
 
80
- run_button = gr.Button("Run", scale=0, variant="primary")
 
81
 
82
- result = gr.Image(label="Result", show_label=False)
83
 
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
 
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
-
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ import requests
4
+ import io
5
+ import re
6
+ from PIL import Image
7
+ from groq import Groq
8
+
9
+ # Set Your API Keys
10
+ # Use environment variables securely
11
+ GROQ_API_KEY = os.getenv("GROQ_API_KEY")
12
+ HF_API_KEY = os.getenv("HF_TOKEN")
13
+
14
+ if not GROQ_API_KEY or not HF_API_KEY:
15
+ raise ValueError("GROQ_API_KEY and HF_TOKEN must be set in the environment variables.")
16
+ # Initialize Groq API client
17
+ client = Groq(api_key=GROQ_API_KEY)
18
+
19
+ # Use a Public Hugging Face Image Model
20
+ HF_IMAGE_MODEL = "stabilityai/stable-diffusion-2-1"
21
+
22
+
23
+ # Function 1: Tamil Audio to Tamil Text (Transcription)
24
+ def transcribe_audio(audio_path):
25
+ if not audio_path:
26
+ return "Error: Please upload an audio file."
27
+
28
+ try:
29
+ with open(audio_path, "rb") as file:
30
+ transcription = client.audio.transcriptions.create(
31
+ file=(os.path.basename(audio_path), file.read()),
32
+ model="whisper-large-v3",
33
+ language="ta", # Tamil
34
+ response_format="verbose_json",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  )
36
+ return transcription.text.strip()
37
 
38
+ except Exception as e:
39
+ return f"Error in transcription: {str(e)}"
40
 
 
41
 
42
+ # Function 2: Tamil Text to English Translation
43
+ def translate_tamil_to_english(tamil_text):
44
+ if not tamil_text:
45
+ return "Error: Please enter Tamil text for translation."
 
 
 
46
 
47
+ prompt = f"Translate this Tamil text to English: {tamil_text}\nGive only the translated text as output."
48
+
49
+ try:
50
+ response = client.chat.completions.create(
51
+ model="llama3-8b-8192", # Groq-supported model
52
+ messages=[{"role": "user", "content": prompt}],
53
+ )
54
+ translated_text = response.choices[0].message.content.strip()
55
+
56
+ # Fix: Remove unwanted XML tags like <think></think>
57
+ translated_text = re.sub(r"</?think>", "", translated_text).strip()
58
+ return translated_text
59
+
60
+ except Exception as e:
61
+ return f"Error in translation: {str(e)}"
62
+
63
+
64
+ # Function 3: English Text to Image Generation (Hugging Face)
65
+ def generate_image(english_text):
66
+ if not english_text:
67
+ return "Error: Please enter a description for image generation."
68
+
69
+ try:
70
+ headers = {"Authorization": f"Bearer {HF_API_KEY}"}
71
+ payload = {"inputs": english_text}
72
+
73
+ response = requests.post(f"https://api-inference.huggingface.co/models/{HF_IMAGE_MODEL}",
74
+ headers=headers, json=payload)
75
+ response.raise_for_status()
76
+ image_bytes = response.content
77
+
78
+ # Check if the response is a valid image
79
+ if not image_bytes:
80
+ return "Error: Received empty response from API."
81
+
82
+ return Image.open(io.BytesIO(image_bytes))
83
+
84
+ except Exception as e:
85
+ return f"Error in image generation: {str(e)}"
86
+
87
+
88
+ # Function 4: English Text to AI-Generated Text
89
+
90
+ def generate_text(english_text):
91
+ if not english_text:
92
+ return "Please enter a prompt."
93
+
94
+ try:
95
+ response = client.chat.completions.create(
96
+ model="llama3-8b-8192", # Ensure you're using a valid model
97
+ messages=[{"role": "user", "content": english_text}],
98
+ )
99
+
100
+ # Extract the response content
101
+ generated_text = response.choices[0].message.content.strip()
102
+
103
+ # Remove unwanted XML-like tags
104
+ cleaned_text = re.sub(r"</?think>", "", generated_text).strip()
105
+
106
+ return cleaned_text
107
+
108
+ except Exception as e:
109
+ return f"Error in text generation: {str(e)}"
110
+
111
+
112
+ # Combined Function to Process All Steps
113
+ def process_audio(audio_path):
114
+ # Step 1: Tamil Audio → Tamil Text
115
+ tamil_text = transcribe_audio(audio_path)
116
+ if "Error" in tamil_text:
117
+ return tamil_text, None, None, None
118
+
119
+ # Step 2: Tamil Text → English Text
120
+ english_text = translate_tamil_to_english(tamil_text)
121
+ if "Error" in english_text:
122
+ return tamil_text, english_text, None, None
123
+
124
+ # Step 3: English Text → Image
125
+ image = generate_image(english_text)
126
+ if isinstance(image, str) and "Error" in image:
127
+ return tamil_text, english_text, None, None
128
+
129
+ # Step 4: English Text → AI-Generated Text
130
+ generated_text = generate_text(english_text)
131
+ return tamil_text, english_text, image, generated_text
132
+
133
+
134
+ # Create Gradio Interface
135
+ iface = gr.Interface(
136
+ fn=process_audio,
137
+ inputs=gr.Audio(type="filepath", label="Upload Tamil Audio"),
138
+ outputs=[
139
+ gr.Textbox(label="Transcribed Tamil Text"),
140
+ gr.Textbox(label="Translated English Text"),
141
+ gr.Image(label="Generated Image"),
142
+ gr.Textbox(label="Generated Text from English Prompt"),
143
+ ],
144
+ title="Tamil Audio to AI Processing Pipeline",
145
+ description="Upload a Tamil audio file and get transcription, translation, image generation, and further text generation.",
146
+ )
147
 
148
+ # Launch Gradio App
149
+ iface.launch()