Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
|
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
|
|
6 |
|
7 |
# 定义分类函数
|
8 |
def classify_image(image):
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# 创建 Gradio 界面
|
13 |
demo = gr.Interface(fn=classify_image, inputs="image", outputs="text", title="Image Classification Demo")
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
|
6 |
+
# 加载模型和特征提取器
|
7 |
+
model_name = "microsoft/beit-base-patch16-224"
|
8 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
9 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
10 |
|
11 |
# 定义分类函数
|
12 |
def classify_image(image):
|
13 |
+
image = feature_extractor(images=image, return_tensors="pt")
|
14 |
+
with torch.no_grad():
|
15 |
+
outputs = model(**image)
|
16 |
+
logits = outputs.logits
|
17 |
+
predicted_class = logits.argmax(-1).item()
|
18 |
+
return f"Predicted class: {predicted_class}"
|
19 |
|
20 |
# 创建 Gradio 界面
|
21 |
demo = gr.Interface(fn=classify_image, inputs="image", outputs="text", title="Image Classification Demo")
|