CrossFlow / datasets.py
QHL067's picture
working
f9567e5
from torch.utils.data import Dataset
from torchvision import datasets
import torchvision.transforms as transforms
from scipy.signal import convolve2d
import numpy as np
import torch
import math
import random
from PIL import Image
import os
import glob
import einops
import torchvision.transforms.functional as F
import time
from tqdm import tqdm
import json
import pickle
import io
import cv2
import libs.clip
import bisect
class UnlabeledDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, item):
data = tuple(self.dataset[item][:-1]) # remove label
if len(data) == 1:
data = data[0]
return data
class LabeledDataset(Dataset):
def __init__(self, dataset, labels):
self.dataset = dataset
self.labels = labels
def __len__(self):
return len(self.dataset)
def __getitem__(self, item):
return self.dataset[item], self.labels[item]
class DatasetFactory(object):
def __init__(self):
self.train = None
self.test = None
def get_split(self, split, labeled=False):
if split == "train":
dataset = self.train
elif split == "test":
dataset = self.test
else:
raise ValueError
if self.has_label:
return dataset if labeled else UnlabeledDataset(dataset)
else:
assert not labeled
return dataset
def unpreprocess(self, v): # to B C H W and [0, 1]
v = 0.5 * (v + 1.)
v.clamp_(0., 1.)
return v
@property
def has_label(self):
return True
@property
def data_shape(self):
raise NotImplementedError
@property
def data_dim(self):
return int(np.prod(self.data_shape))
@property
def fid_stat(self):
return None
def sample_label(self, n_samples, device):
raise NotImplementedError
def label_prob(self, k):
raise NotImplementedError
def center_crop_arr(pil_image, image_size):
# We are not on a new enough PIL to support the `reducing_gap`
# argument, which uses BOX downsampling at powers of two first.
# Thus, we do it by hand to improve downsample quality.
while min(*pil_image.size) >= 2 * image_size:
pil_image = pil_image.resize(
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
)
scale = image_size / min(*pil_image.size)
pil_image = pil_image.resize(
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
)
arr = np.array(pil_image)
crop_y = (arr.shape[0] - image_size) // 2
crop_x = (arr.shape[1] - image_size) // 2
return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
# MS COCO
def center_crop(width, height, img):
resample = {'box': Image.BOX, 'lanczos': Image.LANCZOS}['lanczos']
crop = np.min(img.shape[:2])
img = img[(img.shape[0] - crop) // 2: (img.shape[0] + crop) // 2,
(img.shape[1] - crop) // 2: (img.shape[1] + crop) // 2]
try:
img = Image.fromarray(img, 'RGB')
except:
img = Image.fromarray(img)
img = img.resize((width, height), resample)
return np.array(img).astype(np.uint8)
class MSCOCODatabase(Dataset):
def __init__(self, root, annFile, size=None):
from pycocotools.coco import COCO
self.root = root
self.height = self.width = size
self.coco = COCO(annFile)
self.keys = list(sorted(self.coco.imgs.keys()))
def _load_image(self, key: int):
path = self.coco.loadImgs(key)[0]["file_name"]
return Image.open(os.path.join(self.root, path)).convert("RGB")
def _load_target(self, key: int):
return self.coco.loadAnns(self.coco.getAnnIds(key))
def __len__(self):
return len(self.keys)
def __getitem__(self, index):
key = self.keys[index]
image = self._load_image(key)
image = np.array(image).astype(np.uint8)
image = center_crop(self.width, self.height, image).astype(np.float32)
image = (image / 127.5 - 1.0).astype(np.float32)
image = einops.rearrange(image, 'h w c -> c h w')
anns = self._load_target(key)
target = []
for ann in anns:
target.append(ann['caption'])
return image, target
def get_feature_dir_info(root):
files = glob.glob(os.path.join(root, '*.npy'))
files_caption = glob.glob(os.path.join(root, '*_*.npy'))
num_data = len(files) - len(files_caption)
n_captions = {k: 0 for k in range(num_data)}
for f in files_caption:
name = os.path.split(f)[-1]
k1, k2 = os.path.splitext(name)[0].split('_')
n_captions[int(k1)] += 1
return num_data, n_captions
class MSCOCOFeatureDataset(Dataset):
# the image features are got through sample
def __init__(self, root, need_squeeze=False, full_feature=False, fix_test_order=False):
self.root = root
self.num_data, self.n_captions = get_feature_dir_info(root)
self.need_squeeze = need_squeeze
self.full_feature = full_feature
self.fix_test_order = fix_test_order
def __len__(self):
return self.num_data
def __getitem__(self, index):
if self.full_feature:
z = np.load(os.path.join(self.root, f'{index}.npy'))
if self.fix_test_order:
k = self.n_captions[index] - 1
else:
k = random.randint(0, self.n_captions[index] - 1)
test_item = np.load(os.path.join(self.root, f'{index}_{k}.npy'), allow_pickle=True).item()
token_embedding = test_item['token_embedding']
token_mask = test_item['token_mask']
token = test_item['token']
caption = test_item['promt']
return z, token_embedding, token_mask, token, caption
else:
z = np.load(os.path.join(self.root, f'{index}.npy'))
k = random.randint(0, self.n_captions[index] - 1)
c = np.load(os.path.join(self.root, f'{index}_{k}.npy'))
if self.need_squeeze:
return z, c.squeeze()
else:
return z, c
class JDBFeatureDataset(Dataset):
def __init__(self, root, resolution, llm):
super().__init__()
json_path = os.path.join(root,'img_text_pair.jsonl')
self.img_root = os.path.join(root,'imgs')
self.feature_root = os.path.join(root,'features')
self.resolution = resolution
self.llm = llm
self.file_list = []
with open(json_path, 'r', encoding='utf-8') as file:
for line in file:
self.file_list.append(json.loads(line)['img_path'])
def __len__(self):
return len(self.file_list)
def __getitem__(self, idx):
data_item = self.file_list[idx]
feature_path = os.path.join(self.feature_root, data_item.split('/')[-1].replace('.jpg','.npy'))
img_path = os.path.join(self.img_root, data_item)
train_item = np.load(feature_path, allow_pickle=True).item()
pil_image = Image.open(img_path)
pil_image.load()
pil_image = pil_image.convert("RGB")
z = train_item[f'image_latent_{self.resolution}']
token_embedding = train_item[f'token_embedding_{self.llm}']
token_mask = train_item[f'token_mask_{self.llm}']
token = train_item[f'token_{self.llm}']
caption = train_item['batch_caption']
img = center_crop_arr(pil_image, image_size=self.resolution)
img = (img / 127.5 - 1.0).astype(np.float32)
img = einops.rearrange(img, 'h w c -> c h w')
# return z, token_embedding, token_mask, token, caption, 0, img, 0, 0
return z, token_embedding, token_mask, token, caption, img
class JDBFullFeatures(DatasetFactory): # the moments calculated by Stable Diffusion image encoder & the contexts calculated by clip
def __init__(self, train_path, val_path, resolution, llm, cfg=False, p_uncond=None, fix_test_order=False):
super().__init__()
print('Prepare dataset...')
self.resolution = resolution
self.train = JDBFeatureDataset(train_path, resolution=resolution, llm=llm)
self.test = MSCOCOFeatureDataset(os.path.join(val_path, 'val'), full_feature=True, fix_test_order=fix_test_order)
assert len(self.test) == 40504
print('Prepare dataset ok')
self.empty_context = np.load(os.path.join(val_path, 'empty_context.npy'), allow_pickle=True).item()
assert not cfg
# text embedding extracted by clip
self.prompts, self.token_embedding, self.token_mask, self.token = [], [], [], []
for f in sorted(os.listdir(os.path.join(val_path, 'run_vis')), key=lambda x: int(x.split('.')[0])):
vis_item = np.load(os.path.join(val_path, 'run_vis', f), allow_pickle=True).item()
self.prompts.append(vis_item['promt'])
self.token_embedding.append(vis_item['token_embedding'])
self.token_mask.append(vis_item['token_mask'])
self.token.append(vis_item['token'])
self.token_embedding = np.array(self.token_embedding)
self.token_mask = np.array(self.token_mask)
self.token = np.array(self.token)
@property
def data_shape(self):
if self.resolution==512:
return 4, 64, 64
else:
return 4, 32, 32
@property
def fid_stat(self):
return f'assets/fid_stats/fid_stats_mscoco256_val.npz'
def get_dataset(name, **kwargs):
if name == 'JDB_demo_features':
return JDBFullFeatures(**kwargs)
else:
raise NotImplementedError(name)