CrossFlow / app.py
QHL067's picture
highlight
82cdee5
import gradio as gr
from absl import flags
from absl import app
from ml_collections import config_flags
import os
import spaces #[uncomment to use ZeroGPU]
import torch
import io
import random
import tempfile
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.utils import save_image
from torchvision.transforms import ToPILImage
from huggingface_hub import hf_hub_download
from absl import logging
import ml_collections
from diffusion.flow_matching import ODEEulerFlowMatchingSolver
import utils
import libs.autoencoder
from libs.clip import FrozenCLIPEmbedder
from configs import t2i_512px_clip_dimr, t2i_256px_clip_dimr
def unpreprocess(x: torch.Tensor) -> torch.Tensor:
x = 0.5 * (x + 1.0)
x.clamp_(0.0, 1.0)
return x
def cosine_similarity_torch(latent1: torch.Tensor, latent2: torch.Tensor) -> torch.Tensor:
latent1_flat = latent1.view(-1)
latent2_flat = latent2.view(-1)
cosine_similarity = F.cosine_similarity(
latent1_flat.unsqueeze(0), latent2_flat.unsqueeze(0), dim=1
)
return cosine_similarity
def kl_divergence(latent1: torch.Tensor, latent2: torch.Tensor) -> torch.Tensor:
latent1_prob = F.softmax(latent1, dim=-1)
latent2_prob = F.softmax(latent2, dim=-1)
latent1_log_prob = torch.log(latent1_prob)
kl_div = F.kl_div(latent1_log_prob, latent2_prob, reduction="batchmean")
return kl_div
def batch_decode(_z: torch.Tensor, decode, batch_size: int = 5) -> torch.Tensor:
num_samples = _z.size(0)
decoded_batches = []
for i in range(0, num_samples, batch_size):
batch = _z[i : i + batch_size]
decoded_batch = decode(batch)
decoded_batches.append(decoded_batch)
return torch.cat(decoded_batches, dim=0)
def get_caption(llm: str, text_model, prompt_dict: dict, batch_size: int):
if batch_size == 3:
# Only addition or only subtraction mode.
assert len(prompt_dict) == 2, "Expected 2 prompts for batch_size 3."
batch_prompts = list(prompt_dict.values()) + [" "]
elif batch_size == 4:
# Addition and subtraction mode.
assert len(prompt_dict) == 3, "Expected 3 prompts for batch_size 4."
batch_prompts = list(prompt_dict.values()) + [" "]
elif batch_size >= 5:
# Linear interpolation mode.
assert len(prompt_dict) == 2, "Expected 2 prompts for linear interpolation."
batch_prompts = [prompt_dict["prompt_1"]] + [" "] * (batch_size - 2) + [prompt_dict["prompt_2"]]
else:
raise ValueError(f"Unsupported batch_size: {batch_size}")
if llm == "clip":
latent, latent_and_others = text_model.encode(batch_prompts)
context = latent_and_others["token_embedding"].detach()
elif llm == "t5":
latent, latent_and_others = text_model.get_text_embeddings(batch_prompts)
context = (latent_and_others["token_embedding"] * 10.0).detach()
else:
raise NotImplementedError(f"Language model {llm} not supported.")
token_mask = latent_and_others["token_mask"].detach()
tokens = latent_and_others["tokens"].detach()
captions = batch_prompts
return context, token_mask, tokens, captions
# Load configuration and initialize models.
# config_dict = t2i_512px_clip_dimr.get_config()
config_dict = t2i_256px_clip_dimr.get_config()
config_1 = ml_collections.ConfigDict(config_dict)
config_dict = t2i_512px_clip_dimr.get_config()
config_2 = ml_collections.ConfigDict(config_dict)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Using device: {device}")
# Freeze configuration.
config_1 = ml_collections.FrozenConfigDict(config_1)
config_2 = ml_collections.FrozenConfigDict(config_2)
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024 # Currently not used.
# Load the main diffusion model.
repo_id = "QHL067/CrossFlow"
# filename = "pretrained_models/t2i_512px_clip_dimr.pth"
filename = "pretrained_models/t2i_256px_clip_dimr.pth"
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
nnet_1 = utils.get_nnet(**config_1.nnet)
nnet_1 = nnet_1.to(device)
state_dict = torch.load(checkpoint_path, map_location=device)
nnet_1.load_state_dict(state_dict)
nnet_1.eval()
filename = "pretrained_models/t2i_512px_clip_dimr.pth"
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
nnet_2 = utils.get_nnet(**config_2.nnet)
nnet_2 = nnet_2.to(device)
state_dict = torch.load(checkpoint_path, map_location=device)
nnet_2.load_state_dict(state_dict)
nnet_2.eval()
# Initialize text model.
llm = "clip"
clip = FrozenCLIPEmbedder()
clip.eval()
clip.to(device)
# Load autoencoder.
autoencoder = libs.autoencoder.get_model(**config_1.autoencoder)
autoencoder.to(device)
@torch.cuda.amp.autocast()
def encode(_batch: torch.Tensor) -> torch.Tensor:
"""Encode a batch of images using the autoencoder."""
return autoencoder.encode(_batch)
@torch.cuda.amp.autocast()
def decode(_batch: torch.Tensor) -> torch.Tensor:
"""Decode a batch of latent vectors using the autoencoder."""
return autoencoder.decode(_batch)
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt1,
prompt2,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
num_of_interpolation,
operation_mode,
save_gpu_memory=True,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
torch.manual_seed(seed)
if device.type == "cuda":
torch.cuda.manual_seed_all(seed)
# Only support interpolation in this implementation.
prompt_dict = {"prompt_1": prompt1, "prompt_2": prompt2}
for key, value in prompt_dict.items():
assert value is not None, f"{key} must not be None."
if operation_mode == 'Interpolation':
assert num_of_interpolation >= 5, "For linear interpolation, please sample at least five images."
else:
assert num_of_interpolation == 3, "For arithmetic, please sample three images."
if num_of_interpolation == 3:
nnet = nnet_2
config = config_2
else:
nnet = nnet_1
config = config_1
# nnet = nnet_1
# config = config_1
# Get text embeddings and tokens.
_context, _token_mask, _token, _caption = get_caption(
llm, clip, prompt_dict=prompt_dict, batch_size=num_of_interpolation
)
with torch.no_grad():
_z_gaussian = torch.randn(num_of_interpolation, *config.z_shape, device=device)
_z_x0, _mu, _log_var = nnet(
_context, text_encoder=True, shape=_z_gaussian.shape, mask=_token_mask
)
_z_init = _z_x0.reshape(_z_gaussian.shape)
# Prepare the initial latent representations based on the number of interpolations.
if num_of_interpolation == 3:
# Addition or subtraction mode.
if operation_mode == 'Addition':
z_init_temp = _z_init[0] + _z_init[1]
elif operation_mode == 'Subtraction':
z_init_temp = _z_init[0] - _z_init[1]
else:
raise NotImplementedError("Either prompt_a or prompt_s must be provided for 3-sample mode.")
mean = z_init_temp.mean()
std = z_init_temp.std()
_z_init[2] = (z_init_temp - mean) / std
elif num_of_interpolation == 4:
raise ValueError("Unsupported number of interpolations.")
elif num_of_interpolation >= 5:
tensor_a = _z_init[0]
tensor_b = _z_init[-1]
num_interpolations = num_of_interpolation - 2
interpolations = [
tensor_a + (tensor_b - tensor_a) * (i / (num_interpolations + 1))
for i in range(1, num_interpolations + 1)
]
_z_init = torch.stack([tensor_a] + interpolations + [tensor_b], dim=0)
else:
raise ValueError("Unsupported number of interpolations.")
assert guidance_scale > 1, "Guidance scale must be greater than 1."
has_null_indicator = hasattr(config.nnet.model_args, "cfg_indicator")
ode_solver = ODEEulerFlowMatchingSolver(
nnet,
bdv_model_fn=None,
step_size_type="step_in_dsigma",
guidance_scale=guidance_scale,
)
_z, _ = ode_solver.sample(
x_T=_z_init,
batch_size=num_of_interpolation,
sample_steps=num_inference_steps,
unconditional_guidance_scale=guidance_scale,
has_null_indicator=has_null_indicator,
)
print("+++++"*20)
print("Now, save images")
print("+++++"*20)
if save_gpu_memory:
image_unprocessed = batch_decode(_z, decode)
else:
image_unprocessed = decode(_z)
samples = unpreprocess(image_unprocessed).contiguous()
to_pil = ToPILImage()
pil_images = [to_pil(img) for img in samples]
if num_of_interpolation == 3:
return pil_images[0], pil_images[1], pil_images[2], seed
else:
first_image = pil_images[0]
last_image = pil_images[-1]
gif_buffer = io.BytesIO()
pil_images[0].save(gif_buffer, format="GIF", save_all=True, append_images=pil_images[1:], duration=200, loop=0)
gif_buffer.seek(0)
gif_bytes = gif_buffer.read()
# Save the GIF bytes to a temporary file and get its path
temp_gif = tempfile.NamedTemporaryFile(delete=False, suffix=".gif")
temp_gif.write(gif_bytes)
temp_gif.close()
gif_path = temp_gif.name
return first_image, last_image, gif_path, seed
# return first_image, last_image, seed
# examples = [
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
# "An astronaut riding a green horse",
# "A delicious ceviche cheesecake slice",
# ]
def infer_tab1(prompt1, prompt2, seed, randomize_seed, guidance_scale, num_inference_steps, num_of_interpolation):
default_op = "Interpolation"
return infer(prompt1, prompt2, seed, randomize_seed, guidance_scale, num_inference_steps, num_of_interpolation, default_op)
# Wrapper for Tab 2: Uses operation_mode and fixes num_of_interpolation to 3.
def infer_tab2(prompt1, prompt2, seed, randomize_seed, guidance_scale, num_inference_steps, operation_mode):
default_interpolation = 3
return infer(prompt1, prompt2, seed, randomize_seed, guidance_scale, num_inference_steps, default_interpolation, operation_mode)
examples_1 = [
["A robot cooking dinner in the kitchen", "An orange cat wearing sunglasses on a ship"],
]
examples_2 = [
["A dog wearing sunglasses", "a hat"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
# with gr.Blocks(css=css) as demo:
# with gr.Column(elem_id="col-container"):
# gr.Markdown("# CrossFlow")
# gr.Markdown("[CrossFlow](https://cross-flow.github.io/) directly transforms text representations into images for text-to-image generation, without the need for both the noise distribution and conditioning mechanism.")
# gr.Markdown("This direct mapping enables meaningful 'Linear Interpolation' and 'Arithmetic Operations' in the text latent space, as demonstrated here.")
# with gr.Tabs():
# with gr.Tab("Linear Interpolation"):
# gr.Markdown("This demo uses 256px images, 25 sampling steps (instead of 50), and 10 interpolations (instead of 50) to conserve GPU memory. For better results, see the original [code](https://github.com/qihao067/CrossFlow). (You may adjust them in Advanced Settings, but doing so may trigger OOM errors.)")
# # gr.Markdown("CrossFlow directly transforms text representations into images for text-to-image generation, enabling interpolation in the input text latent space.")
# with gr.Row():
# prompt1 = gr.Text(
# label="Prompt_1",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt for the first image",
# container=False,
# )
# with gr.Row():
# prompt2 = gr.Text(
# label="Prompt_2",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt for the second image",
# container=False,
# )
# with gr.Row():
# run_button = gr.Button("Run", scale=0, variant="primary")
# # Create separate outputs for the first image, last image, and the animated GIF
# first_image_output = gr.Image(label="Image of the first prompt", show_label=True)
# last_image_output = gr.Image(label="Image of the second prompt", show_label=True)
# gif_output = gr.Image(label="Linear interpolation", show_label=True)
# with gr.Accordion("Advanced Settings", open=False):
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=7.0, # Replace with defaults that work for your model
# )
# with gr.Row():
# num_inference_steps = gr.Slider(
# label="Number of inference steps - 50 inference steps are recommended; but you can reduce to 20 if the demo fails.",
# minimum=1,
# maximum=50,
# step=1,
# value=25, # Replace with defaults that work for your model
# )
# with gr.Row():
# num_of_interpolation = gr.Slider(
# label="Number of images for interpolation - More images yield smoother transitions but require more resources and may fail.",
# minimum=5,
# maximum=50,
# step=1,
# value=10, # Replace with defaults that work for your model
# )
# gr.Examples(examples=examples, inputs=[prompt1, prompt2])
# with gr.Tab("Arithmetic Operations"):
# # The second tab is currently empty. You can add more components later.
# gr.Markdown("This demo only supports addition or subtraction between two text latents ('Prompt_1 + Prompt_2' or 'Prompt_1 - Prompt_2'). For the other arithmetic operations, see the original [code](https://github.com/qihao067/CrossFlow).")
# with gr.Row():
# prompt1 = gr.Text(
# label="Prompt_1",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt for the first image",
# container=False,
# )
# with gr.Row():
# prompt2 = gr.Text(
# label="Prompt_2",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt for the second image",
# container=False,
# )
# with gr.Row():
# operation_mode = gr.Radio(
# choices=["Addition", "Subtraction"],
# label="Operation Mode",
# value="Addition",
# )
# with gr.Row():
# run_button = gr.Button("Run", scale=0, variant="primary")
# # Create separate outputs for the first image, last image, and the animated GIF
# first_image_output = gr.Image(label="Image of the first prompt", show_label=True)
# last_image_output = gr.Image(label="Image of the second prompt", show_label=True)
# gif_output = gr.Image(label="Linear interpolation", show_label=True)
# with gr.Accordion("Advanced Settings", open=False):
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=7.0, # Replace with defaults that work for your model
# )
# # with gr.Row():
# # num_inference_steps = gr.Slider(
# # label="Number of inference steps - 50 inference steps are recommended; but you can reduce to 20 if the demo fails.",
# # minimum=1,
# # maximum=50,
# # step=1,
# # value=55, # Replace with defaults that work for your model
# # )
# with gr.Row():
# num_of_interpolation = gr.Slider(
# label="Number of images for interpolation - More images yield smoother transitions but require more resources and may fail.",
# minimum=5,
# maximum=50,
# step=1,
# value=50, # Replace with defaults that work for your model
# )
# gr.Examples(examples=examples, inputs=[prompt1, prompt2])
# gr.on(
# triggers=[run_button.click, prompt1.submit, prompt2.submit],
# fn=infer,
# inputs=[
# prompt1,
# prompt2,
# seed,
# randomize_seed,
# guidance_scale,
# num_inference_steps,
# num_of_interpolation,
# ],
# outputs=[first_image_output, last_image_output, gif_output, seed],
# # outputs=[first_image_output, last_image_output, seed],
# )
with gr.Blocks(css=css) as demo:
gr.Markdown("# CrossFlow")
gr.Markdown("[CVPR 2025] Flowing from Words to Pixels: A Framework for Cross-Modality Evolution")
gr.Markdown("[CrossFlow](https://cross-flow.github.io/) achieves text-to-image generation by directly mapping text representations (source distribution) to images (target distribution), eliminating the need for a noise distribution or conditioning mechanism.")
gr.Markdown("This direct mapping enables meaningful 'Linear Interpolation' and 'Arithmetic Operations' in the text latent space, as demonstrated here.")
with gr.Tabs():
# --- Tab 1: Interpolation Mode (no operation_mode) ---
with gr.Tab("[Linear Interpolation]"):
gr.Markdown("This demo uses 256px images, 25 sampling steps (instead of 50), and 10 interpolations (instead of 50) to conserve GPU memory.")
gr.Markdown("**You will get much better results with the original [code](https://github.com/qihao067/CrossFlow)**. (You may also adjust the sampling steps and interpolations in Advanced Settings, but doing so may trigger OOM errors.)")
prompt1_tab1 = gr.Text(placeholder="Prompt for first image", label="Prompt 1")
prompt2_tab1 = gr.Text(placeholder="Prompt for second image", label="Prompt 2")
seed_tab1 = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, value=0, label="Seed")
randomize_seed_tab1 = gr.Checkbox(label="Randomize seed", value=True)
with gr.Accordion("Advanced Settings", open=False):
guidance_scale_tab1 = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=7.0, label="Guidance Scale")
num_inference_steps_tab1 = gr.Slider(minimum=1, maximum=50, step=1, value=25, label="Number of Inference Steps")
num_of_interpolation_tab1 = gr.Slider(minimum=5, maximum=50, step=1, value=10, label="Number of Images for Interpolation")
run_button_tab1 = gr.Button("Run")
first_image_output_tab1 = gr.Image(label="Image of the first prompt")
last_image_output_tab1 = gr.Image(label="Image of the second prompt")
gif_output_tab1 = gr.Image(label="Linear interpolation")
run_button_tab1.click(
fn=infer_tab1,
inputs=[
prompt1_tab1,
prompt2_tab1,
seed_tab1,
randomize_seed_tab1,
guidance_scale_tab1,
num_inference_steps_tab1,
num_of_interpolation_tab1
],
outputs=[first_image_output_tab1, last_image_output_tab1, gif_output_tab1, seed_tab1]
)
gr.Examples(examples=examples_1, inputs=[prompt1_tab1, prompt2_tab1])
# --- Tab 2: Operation Mode (no num_of_interpolation) ---
with gr.Tab("[Arithmetic Operations]"):
gr.Markdown("This demo only supports addition or subtraction between two text latents, i.e., 'VE(Prompt_1) + VE(Prompt_2)' or 'VE(Prompt_1) - VE(Prompt_2)'. For the other arithmetic operations, see the original [code](https://github.com/qihao067/CrossFlow).")
prompt1_tab2 = gr.Text(placeholder="Prompt for first image", label="Prompt 1")
prompt2_tab2 = gr.Text(placeholder="Prompt for second image", label="Prompt 2")
seed_tab2 = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, value=0, label="Seed")
randomize_seed_tab2 = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale_tab2 = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=7.0, label="Guidance Scale")
num_inference_steps_tab2 = gr.Slider(minimum=1, maximum=50, step=1, value=50, label="Number of Inference Steps")
operation_mode_tab2 = gr.Radio(choices=["Addition", "Subtraction"], label="Operation Mode", value="Addition")
run_button_tab2 = gr.Button("Run")
first_image_output_tab2 = gr.Image(label="Image of the first prompt")
last_image_output_tab2 = gr.Image(label="Image of the second prompt")
gif_output_tab2 = gr.Image(label="Resulting image produced by the arithmetic operations.")
run_button_tab2.click(
fn=infer_tab2,
inputs=[
prompt1_tab2,
prompt2_tab2,
seed_tab2,
randomize_seed_tab2,
guidance_scale_tab2,
num_inference_steps_tab2,
operation_mode_tab2
],
outputs=[first_image_output_tab2, last_image_output_tab2, gif_output_tab2, seed_tab2]
)
gr.Examples(examples=examples_2, inputs=[prompt1_tab2, prompt2_tab2])
if __name__ == "__main__":
demo.launch()