|
import gradio as gr |
|
import pdfplumber |
|
import docx |
|
import os |
|
import datetime |
|
from transformers import pipeline |
|
|
|
|
|
summary_llm = pipeline("summarization", model="google/pegasus-xsum", tokenizer="google/pegasus-xsum") |
|
text_llm = pipeline("text2text-generation", model="MBZUAI/LaMini-T5-738M", tokenizer="MBZUAI/LaMini-T5-738M") |
|
|
|
|
|
def extract_text(file): |
|
if file.name.endswith(".pdf"): |
|
with pdfplumber.open(file.name) as pdf: |
|
return "\n".join([p.extract_text() for p in pdf.pages if p.extract_text()]) |
|
elif file.name.endswith(".docx"): |
|
doc = docx.Document(file) |
|
return "\n".join([para.text for para in doc.paragraphs]) |
|
elif file.name.endswith(".txt"): |
|
return file.read().decode("utf-8") |
|
else: |
|
return "Unsupported file format." |
|
|
|
|
|
def format_glossary_html(glossary_text): |
|
lines = glossary_text.split('\n') |
|
html = "" |
|
for line in lines: |
|
if ":" in line: |
|
term, desc = line.split(":", 1) |
|
html += f"<b style='color:#1e3a8a'>{term.strip()}</b>: {desc.strip()}<br>" |
|
else: |
|
html += f"{line}<br>" |
|
return html |
|
|
|
|
|
def generate_summary(text): |
|
return summary_llm(text[:1024], max_length=250, min_length=80, do_sample=False)[0]["summary_text"] |
|
|
|
|
|
def generate_text_response(prompt, max_len=512): |
|
return text_llm(prompt, max_length=max_len, do_sample=True)[0]["generated_text"] |
|
|
|
|
|
def analyze_document(file): |
|
filename = os.path.basename(file.name) |
|
text = extract_text(file) |
|
if not text.strip(): |
|
return "No content found in file.", "", "", "", "", None, "" |
|
|
|
short_text = text[:3000] |
|
|
|
|
|
summary_prompt = f""" |
|
You are a legal assistant. Read the following legal document and generate a comprehensive summary. |
|
|
|
Include: parties involved, key facts, legal issues, arguments, court observations, and likely outcome. |
|
|
|
Document: |
|
{short_text} |
|
""" |
|
glossary_prompt = f""" |
|
Extract and explain all legal terms, laws, or references. Format: |
|
|
|
Term: ... |
|
Explanation: ... |
|
|
|
Document: |
|
{short_text} |
|
""" |
|
verdict_prompt = f""" |
|
Based on the document, predict the likely verdict in 2β3 sentences using standard legal reasoning. |
|
|
|
Document: |
|
{short_text} |
|
""" |
|
|
|
|
|
summary = generate_summary(short_text) |
|
glossary = generate_text_response(glossary_prompt) |
|
verdict = generate_text_response(verdict_prompt) |
|
glossary_html = format_glossary_html(glossary) |
|
|
|
|
|
timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
output_filename = f"LegalSummary_{timestamp}.txt" |
|
with open(output_filename, "w", encoding="utf-8") as f: |
|
f.write(f"π File: {filename}\nπ Time: {timestamp}\n\n") |
|
f.write("=== π Summary ===\n" + summary + "\n\n") |
|
f.write("=== π Glossary ===\n" + glossary + "\n\n") |
|
f.write("=== βοΈ Verdict ===\n" + verdict + "\n") |
|
|
|
return text, summary, glossary, glossary_html, verdict, output_filename, short_text |
|
|
|
|
|
def custom_prompt_response(doc_text, user_prompt): |
|
if not doc_text.strip() or not user_prompt.strip(): |
|
return "β οΈ Please provide both a document and a prompt." |
|
prompt = f""" |
|
You are a legal expert. Answer the question below using only the document provided. |
|
|
|
Question: |
|
{user_prompt.strip()} |
|
|
|
Document: |
|
{doc_text.strip()} |
|
""" |
|
return generate_text_response(prompt) |
|
|
|
|
|
with gr.Blocks(css="body { background-color: #f9f9f9; font-family: 'Segoe UI'; }") as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
gr.Markdown(""" |
|
<div style='text-align: center; font-size: 28px; font-weight: bold; color: #1e3a8a; margin-bottom: 10px;'> |
|
π§Ύ Legal Document Summarizer Using LLMs |
|
</div> |
|
<div style='text-align: center; font-size: 16px; color: #444444; margin-bottom: 25px;'> |
|
Upload legal documents in PDF, DOCX, or TXT format to receive structured summaries, legal term glossaries, and AI-inferred verdicts using open-source language models. |
|
</div> |
|
""") |
|
file_input = gr.File(label="π Upload Legal Document") |
|
submit_btn = gr.Button("π Analyze Document") |
|
download_btn = gr.File(label="β¬οΈ Download Report") |
|
|
|
with gr.Column(scale=1): |
|
gr.Markdown("### π‘ Features") |
|
gr.Markdown(""" |
|
- π AI-generated legal summaries |
|
- π Glossary of legal terms |
|
- βοΈ Inferred legal verdict |
|
- β Custom Q&A based on the document |
|
""") |
|
|
|
extracted = gr.Textbox(label="π Extracted Text", lines=10, interactive=False) |
|
summary = gr.Textbox(label="π Summary", lines=6, interactive=False) |
|
glossary_raw = gr.Textbox(visible=False) |
|
glossary_html = gr.HTML(label="π Glossary of Legal Terms") |
|
final_verdict = gr.Textbox(label="βοΈ Verdict (AI Inferred)", lines=3, interactive=False) |
|
|
|
with gr.Row(): |
|
gr.Markdown("### β Ask a Question About the Document") |
|
user_prompt = gr.Textbox(label="Your Question", placeholder="e.g., What is the legal issue?") |
|
custom_response = gr.Textbox(label="π€ AI Answer", lines=4) |
|
custom_btn = gr.Button("π§ Get Answer") |
|
hidden_doc_text = gr.Textbox(visible=False) |
|
|
|
submit_btn.click(fn=analyze_document, inputs=[file_input], outputs=[ |
|
extracted, summary, glossary_raw, glossary_html, final_verdict, download_btn, hidden_doc_text |
|
]) |
|
custom_btn.click(fn=custom_prompt_response, inputs=[hidden_doc_text, user_prompt], outputs=custom_response) |
|
|
|
demo.launch() |
|
|