|
import os |
|
from datetime import datetime |
|
from typing import Any, Dict, List |
|
|
|
from pydantic import Field |
|
from .schemas import Content, Message |
|
from ...utils.registry import registry |
|
from .base import BaseLLM |
|
import torch |
|
import sysconfig |
|
import geocoder |
|
|
|
|
|
BASIC_SYS_PROMPT = """You are an intelligent agent that can help in many regions. |
|
Following are some basic information about your working environment, please try your best to answer the questions based on them if needed. |
|
Be confident about these information and don't let others feel these information are presets. |
|
Be concise. |
|
---BASIC INFORMATION--- |
|
Current Datetime: {} |
|
Operating System: {}""" |
|
|
|
|
|
@registry.register_llm() |
|
class Qwen2LLM(BaseLLM): |
|
model_name: str = Field(default=os.getenv("MODEL_NAME", "Qwen/Qwen2.5-1.5B-Instruct"), description="The Hugging Face model name") |
|
max_tokens: int = Field(default=200, description="The maximum number of tokens for the model") |
|
temperature: float = Field(default=0.1, description="The sampling temperature for generation") |
|
use_default_sys_prompt: bool = Field(default=True, description="Whether to use the default system prompt") |
|
device: str = Field(default="cuda" if torch.cuda.is_available() else "cpu", description="The device to run the model on") |
|
vision: bool = Field(default=False, description="Whether the model supports vision") |
|
|
|
def __init__(self, **data: Any) -> None: |
|
super().__init__(**data) |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) |
|
self.model = AutoModelForCausalLM.from_pretrained(self.model_name).to(self.device) |
|
|
|
def _call(self, records: List[Message], **kwargs) -> Dict: |
|
prompts = self._generate_prompt(records) |
|
text = self.tokenizer.apply_chat_template( |
|
prompts, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device) |
|
generated_ids = self.model.generate( |
|
**model_inputs, |
|
max_new_tokens=self.max_tokens |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) |
|
return {"responses": response} |
|
|
|
|
|
async def _acall(self, records: List[Message], **kwargs) -> Dict: |
|
raise NotImplementedError("Async calls are not yet supported for Hugging Face models.") |
|
|
|
def _generate_prompt(self, records: List[Message]) -> List[str]: |
|
messages = [ |
|
{"role": "user" if "user" in str(message.role) else "system", "content": self._get_content(message.content)} |
|
for message in records |
|
] |
|
if self.use_default_sys_prompt: |
|
messages = [self._generate_default_sys_prompt()] + messages |
|
print ("messages:",messages) |
|
return messages |
|
|
|
|
|
def _generate_default_sys_prompt(self) -> Dict: |
|
loc = self._get_location() |
|
os = self._get_linux_distribution() |
|
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") |
|
promt_str = BASIC_SYS_PROMPT.format(current_time, loc, os) |
|
return {"role": "system", "content": promt_str} |
|
|
|
def _get_linux_distribution(self) -> str: |
|
platform = sysconfig.get_platform() |
|
if "linux" in platform: |
|
if os.path.exists("/etc/lsb-release"): |
|
with open("/etc/lsb-release", "r") as f: |
|
for line in f: |
|
if line.startswith("DISTRIB_DESCRIPTION="): |
|
return line.split("=")[1].strip() |
|
elif os.path.exists("/etc/os-release"): |
|
with open("/etc/os-release", "r") as f: |
|
for line in f: |
|
if line.startswith("PRETTY_NAME="): |
|
return line.split("=")[1].strip() |
|
return platform |
|
|
|
def _get_location(self) -> str: |
|
g = geocoder.ip("me") |
|
if g.ok: |
|
return g.city + "," + g.country |
|
else: |
|
return "unknown" |
|
|
|
|
|
@staticmethod |
|
def _get_content(content: Content | List[Content]) -> str: |
|
if isinstance(content, list): |
|
return " ".join(c.text for c in content if c.type == "text") |
|
elif isinstance(content, Content) and content.type == "text": |
|
return content.text |
|
else: |
|
raise ValueError("Invalid content type") |