import gradio as gr from transformers import pipeline # Load models # Sentiment Analysis classifier_sentiment = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") def analyze_sentiment(text): result = classifier_sentiment(text)[0] label = result['label'] score = result['score'] return f"Label: {label}, Score: {score:.2f}" # Translation translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr") def translate_text(text): result = translator(text)[0] translated_text = result["translation_text"] return translated_text # Image Classification classifier_image = pipeline("image-classification", model="google/mobilenet_v2_1.0_224") def classify_image(image): results = classifier_image(image) output = "" for result in results: output += f"{result['label']}: {result['score']:.2f}\n" return output # Speech to Text speech_to_text = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") def transcribe_audio(audio): text = speech_to_text(audio)["text"] return text # Text Summarization summarizer = pipeline("summarization", model="facebook/bart-large-cnn") def summarize_text(text): summary = summarizer(text, max_length=130, min_length=30, do_sample=False)[0]["summary_text"] return summary # Define custom CSS styles css = """ """ with gr.Blocks(css=css) as demo: gr.Markdown("

Multi-functional AI Demo

") with gr.Tab("Sentiment Analysis😣"): text_input = gr.Textbox(placeholder="Enter text here...") text_output = gr.Textbox() sentiment_button = gr.Button("Analyze") sentiment_button.click(analyze_sentiment, inputs=text_input, outputs=text_output) with gr.Tab("Translation📚"): text_input_trans = gr.Textbox(placeholder="Enter English text here...") text_output_trans = gr.Textbox() trans_button = gr.Button("Translate") trans_button.click(translate_text, inputs=text_input_trans, outputs=text_output_trans) with gr.Tab("Image Classification🔮"): image_input = gr.Image(type="pil") image_output = gr.Textbox() image_button = gr.Button("Classify") image_button.click(classify_image, inputs=image_input, outputs=image_output) with gr.Tab("Speech to Text🔊"): audio_input = gr.Audio(sources=["microphone"], type="filepath") audio_output = gr.Textbox() audio_button = gr.Button("Transcribe") audio_button.click(transcribe_audio, inputs=audio_input, outputs=audio_output) with gr.Tab("Text Summarization📑"): text_input_summ = gr.Textbox(placeholder="Enter text here...") text_output_summ = gr.Textbox() summ_button = gr.Button("Summarize") summ_button.click(summarize_text, inputs=text_input_summ, outputs=text_output_summ) demo.launch()