Spaces:
Sleeping
Sleeping
File size: 5,081 Bytes
3ff674d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from datetime import datetime
import warnings
from typing import List
from pickle import Unpickler
import re
from bs4 import BeautifulSoup
from groq import Groq
from cohere import Client
from numpy.typing import NDArray
from numpy import array
from gossip_semantic_search.models import Article, Answer
from gossip_semantic_search.constant import (AUTHOR_KEY, TITLE_KEY, LINK_KEY, DESCRIPTION_KEY,
PUBLICATION_DATE_KEY, CONTENT_KEY, LLAMA_70B_MODEL,
DATE_FORMAT, EMBEDING_MODEL)
from gossip_semantic_search.prompts import (generate_question_prompt,
generate_context_retriver_prompt)
def xml_to_dict(element):
result = {}
for child in element:
child_dict = xml_to_dict(child)
if child.tag in result:
if isinstance(result[child.tag], list):
result[child.tag].append(child_dict)
else:
result[child.tag] = [result[child.tag], child_dict]
else:
result[child.tag] = child_dict
if element.text and element.text.strip():
result = element.text.strip()
return result
def sanitize_html_content(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for a in soup.find_all('a'):
a.unwrap()
for tag in soup.find_all(['em', 'strong']):
tag.unwrap()
for blockquote in soup.find_all('blockquote'):
blockquote.extract()
cleaned_text = re.sub(r'\s+', ' ', soup.get_text()).strip()
return cleaned_text
def article_raw_to_article(raw_article) -> Article:
return Article(
author = raw_article[AUTHOR_KEY],
title = raw_article[TITLE_KEY],
link = raw_article[LINK_KEY],
description = raw_article[DESCRIPTION_KEY],
published_date = datetime.strptime(
raw_article[PUBLICATION_DATE_KEY],
DATE_FORMAT
),
content = sanitize_html_content(raw_article[CONTENT_KEY])
)
def generates_questions(context: str,
nb_questions: int,
client: Groq) -> List[str]:
completion = client.chat.completions.create(
model=LLAMA_70B_MODEL,
messages=[
{
"role": "user",
"content": generate_question_prompt(context, nb_questions)
},
],
temperature=1,
max_tokens=1024,
top_p=1,
stream=True,
stop=None,
)
questions_str = "".join(chunk.choices[0].delta.content or "" for chunk in completion)
try:
questions = re.findall(r'([^?]*\?)', questions_str)
questions = [question.strip()[3:] for question in questions]
except IndexError:
warnings.warn(f"no question found. \n"
f"string return: {questions_str}")
return []
if len(questions) != nb_questions:
warnings.warn(f"Expected {nb_questions} questions, but found "
f"{len(questions)}. {', '.join(questions)}", UserWarning)
return questions
def choose_context_and_answer_questions(articles: List[Article],
query:str,
generative_client) -> Answer:
for article in articles:
completion = generative_client.chat.completions.create(
model=LLAMA_70B_MODEL,
messages=[
{
"role": "user",
"content": generate_context_retriver_prompt(query, article.content)
},
],
temperature=1,
max_tokens=1024,
top_p=1,
stream=True,
stop=None,
)
answer = "".join(chunk.choices[0].delta.content or "" for chunk in completion)
pattern = r"answer_in_text\s*=\s*(.*?),"
# Appliquer la regex
match = re.search(pattern, answer)
if match:
if match.group(1) == "True":
pattern = r"answer\s*=\s*(.*)"
match = re.search(pattern, answer)
if match:
answer_value = match.group(1)[1:-2]
return Answer(
answer = answer_value,
link = f"{article.link}",
content = f"{article.content}"
)
return Answer(
answer = "incapable de générer une reponse",
link = f"{articles[0].link}",
content = f"{articles[0].content}"
)
def embed_content(contexts:List[str],
client: Client) -> NDArray:
return array(client.embed(
model=EMBEDING_MODEL,
texts=contexts,
input_type='classification',
truncate='NONE'
).embeddings)
class CustomUnpickler(Unpickler):
def find_class(self, module, name):
if module == 'models':
return Article # Renvoie une classe de remplacement
return super().find_class(module, name)
|