import gradio as gr import torch from diffusers import StableDiffusionDepth2ImgPipeline # Load model pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-2-depth", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ).to("cuda" if torch.cuda.is_available() else "cpu") # Define the function def decorate_room(image, prompt, strength=0.7, guidance_scale=7.5): output = pipe(prompt=prompt, image=image, strength=strength, guidance_scale=guidance_scale) return output.images[0] # Create Gradio UI demo = gr.Interface( fn=decorate_room, inputs=[ gr.Image(type="pil"), gr.Textbox(label="Prompt"), gr.Slider(0, 1, value=0.7, label="Denoising Strength"), gr.Slider(0, 20, value=7.5, label="Guidance Scale") ], outputs=gr.Image(type="pil"), title="Parentsphere Room Decorator", description="Upload a room photo and describe how you want it redecorated!" ) demo.launch()