File size: 1,605 Bytes
a8889cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.16.4
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# +
import streamlit as st
import pandas as pd
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
import warnings
warnings.filterwarnings('ignore')
# Load SBERT model, FAISS index, and data
@st.cache_resource
def load_artifacts():
model = SentenceTransformer('all-MiniLM-L6-v2')
index = faiss.read_index('faiss_index.index')
df = pd.read_csv('assessment_data.csv')
return model, index, df
# Recommendation Function
def recommend_assessments(profile_text, model, index, df, top_n=10):
profile_embedding = model.encode([profile_text]).astype('float32')
_, indices = index.search(profile_embedding, top_n)
return df.iloc[indices[0]]
# Streamlit UI
st.title("🔍 SHL Assessment Recommender")
profile = st.text_area("✍️ Enter your job role or career aspiration:",
"Looking for a leadership role in financial planning and client management")
if st.button("Get Recommendations"):
model, index, df = load_artifacts()
results = recommend_assessments(profile, model, index, df, top_n=10)
st.subheader("🧠 Top 10 Matching Assessments")
st.dataframe(results[['Assesment Name', 'cleaned_text', 'Duration',
'Remote Testing Support', 'URL', 'Adaptive/IRT', 'Job Type']].reset_index(drop=True))
# -
|